Comparative analysis of a number of studies in drought-stressed maize (Zea mays L.) reporting quantitative trait loci (QTLs) for abscisic acid concentration, root characteristics, other morpho-physiological traits (MPTs) and grain yield (GY) reveals their complex genetic basis and the influence of the genetic background and the environment on QTL effects. Chromosome regions (e.g. near umc11 on chromosome 1 and near csu133 on chromosome 2) with QTLs controlling a number of MPTs and GY across populations and conditions of different water supply have been identified. Examples are presented on the use of QTL information to elucidate the genetic and physiological bases of the association among MPTs and GY. The QTL approach allows us to develop hypotheses accounting for these associations which can be further tested by developing near isogenic lines (NILs) differing for the QTL alleles. NILs also allow for a more accurate assessment of the breeding value of MPTs and, in some cases, may allow for the map-based cloning of the gene(s) underlying the QTL. Although QTL analysis is still time-consuming and resource-demanding, its integration with genomics and post-genomics approaches (e.g. transcriptome, proteome and metabolome analyses) will play an increasingly important role for the identification and validation of candidate genes affecting MPTs and GY.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4233811 | PMC |
http://dx.doi.org/10.1093/aob/mcf134 | DOI Listing |
Plant Physiol Biochem
December 2024
State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, 712100, China; Key Laboratory of Wheat Biology and Genetic Improvement on Northwestern China, Ministry of Agriculture and Rural Affairs, Xianyang, 712100, China. Electronic address:
Photosynthesis drives crop growth and production, and strongly affects grain yields; therefore, it is an ideal trait for wheat drought resistance breeding. However, studies of the negative effects of drought stress on wheat photosynthesis rates have lacked accurate evaluation methods, as well as high-throughput techniques. We investigated photosynthetic capacity under drought stress in wheat varieties with varying degrees of drought stress resistance using hyperspectral and chlorophyll fluorescence (ChlF) imaging data.
View Article and Find Full Text PDFPlant Biol (Stuttg)
December 2024
Department of Vegetation Ecology and Biodiversity Conservation, Institute of Ecology, Leuphana University of Lüneburg, Lüneburg, Germany.
Nitrogen (N) deposition and climate change are both known to threaten global biodiversity. However, we still have a limited understanding of how interactions between these global change drivers affect individuals and populations of specialist species, such as geophytes, within their natural habitat. We explored possible interactive effects of N, drought, and warming on population vitality (mean leaf length, leaf density, flowering probability) and morpho-physiological traits (e.
View Article and Find Full Text PDFFront Plant Sci
December 2024
National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
Introduction: Drought stress severely hampers seedling growth and root architecture, resulting in yield penalties. Seed priming is a promising approach to tolerate drought stress for stand establishment and root development.
Methods: Here, various seed priming treatments, .
Chemosphere
December 2024
Department of Botany, Jamia Hamdard, New Delhi, 110062, India. Electronic address:
Heavy metal stress is one of the exorbitant problems faced by plants. Lead (Pb) stress is one of the prevalent stressors in agricultural fields. Nanofertilizers are being currently employed for mitigating heavy metal stress in plants.
View Article and Find Full Text PDFNat Prod Res
December 2024
Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India.
This study investigated the impact of NaCl concentrations (50-200 mM) on (BM) grown under natural environmental conditions. The results revealed significant enhancements ( < 0.05) in various traits under NaCl exposure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!