The aim of this study was to evaluate the potential of the random amplified polymorphic DNA (RAPD) assay to qualitatively detect the kinetics of benzo[a]pyrene (B[a]P)-induced DNA effects in the water flea Daphnia magna exposed to 25 and 50 micrograms l-1 B[a]P for 7 and 6 days, respectively. Mortality was recorded on a daily basis in both experiments, and RAPD analysis was performed on samples collected every day following isolation of genomic DNA. The main changes occurring in RAPD profiles produced by the population of Daphnia magna exposed to 25 and 50 micrograms l-1 B[a]P was a decrease and increase in band intensity, respectively. Most of the changes occurring in the RAPD patterns were likely to be the result of B[a]P-induced DNA damage (B[a]P DNA adducts, oxidized bases, DNA breakages) and/or mutations (point mutations and large rearrangements). In addition, reproducible changes also occurred in the profiles generated by control Daphnia magna. The results lead us to suggest that, in addition to B[a]P-induced DNA damage and mutations, factors such as variation in gene expression, steady levels of genetic alterations and changes in metabolic processes could induce some changes in RAPD patterns. Nevertheless, our data suggest that DNA damage and mutations appear to be the main factors influencing RAPD patterns. This study also emphasizes that unexpected variation in control profiles is not always associated with artefacts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/13547500110057425 | DOI Listing |
ACS Nano
January 2025
Department of Gynecology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P. R. China.
Recent research has demonstrated that activating the cGAS-STING pathway can enhance interferon production and the activation of T cells. A manganese complex, called TPA-Mn, was developed in this context. The reactive oxygen species (ROS)-sensitive nanoparticles (NPMn) loaded with TPA-Mn are developed.
View Article and Find Full Text PDFZool Res
January 2025
Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong 518057, China.
DNA2, a multifunctional enzyme with structure-specific nuclease, 5 -to-3 helicase, and DNA-dependent ATPase activities, plays a pivotal role in the cellular response to DNA damage. However, its involvement in cerebral ischemia/reperfusion (I/R) injury remains to be elucidated. This study investigated the involvement of DNA2 in cerebral I/R injury using conditional knockout (cKO) mice ( -Cre) subjected to middle cerebral artery occlusion (MCAO), an established model of cerebral I/R.
View Article and Find Full Text PDFFront Immunol
January 2025
School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
Background: Disturbances in DNA damage repair may lead to cancer. SIRT1, an NAD+-dependent deacetylase, plays a crucial role in maintaining cellular homeostasis through the regulation of processes such as histone posttranslational modifications, DNA repair, and cellular metabolism. However, a comprehensive exploration of SIRT1's involvement in pan-cancer remains lacking.
View Article and Find Full Text PDFiScience
January 2025
Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
We present a study of rare germline predisposition variants in 954 unrelated individuals with multiple myeloma (MM) and 82 MM families. Using a candidate gene approach, we identified such variants across all age groups in 9.1% of sporadic and 18% of familial cases.
View Article and Find Full Text PDFiScience
January 2025
Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
This article aims to develop and validate a pathological prognostic model for predicting prognosis in patients with isocitrate dehydrogenase (IDH)-mutant gliomas and reveal the biological underpinning of the prognostic pathological features. The pathomic model was constructed based on whole slide images (WSIs) from a training set ( = 486) and evaluated on internal validation set ( = 209), HPPH validation set ( = 54), and TCGA validation set ( = 352). Biological implications of PathScore and individual pathomic features were identified by pathogenomics set ( = 100).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!