AI Article Synopsis

  • Isolated KLF5, a transcription factor, is strongly induced in activated vascular smooth-muscle cells and fibroblasts.
  • In KLF5-knockout mice, responses to stress were significantly reduced, showing less arterial-wall thickening and cardiac issues.
  • KLF5 interacts with retinoic-acid receptor (RAR), with RAR ligands influencing KLF5's activity and cardiovascular responses, highlighting KLF5's role in stress-related cardiovascular remodeling.

Article Abstract

We recently isolated a Krüppel-like zinc-finger transcription factor 5 (KLF5; also known as BTEB2 and IKLF), which is markedly induced in activated vascular smooth-muscle cells and fibroblasts. Here we describe our analysis of the in vivo function of KLF5 using heterozygous KLF5-knockout mice (Klf5(+/-)). In response to external stress, Klf5(+/-) mice showed diminished levels of arterial-wall thickening, angiogenesis, cardiac hypertrophy and interstitial fibrosis. Also, angiotensin II induced expression of KLF5, which in turn activated platelet-derived growth factor-A (PDGF-A) and transforming growth factor-beta (TGF-beta) expression. In addition, we determined that KLF5 interacted with the retinoic-acid receptor (RAR), that synthetic RAR ligands modulated KLF5 transcriptional activity, and that in vivo administration of RAR ligands affected stress responses in the cardiovascular system in a KLF5-dependent manner. KLF5 thus seems to be a key element linking external stress and cardiovascular remodeling.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nm738DOI Listing

Publication Analysis

Top Keywords

krüppel-like zinc-finger
8
zinc-finger transcription
8
transcription factor
8
cardiovascular remodeling
8
external stress
8
rar ligands
8
klf5
6
factor klf5/bteb2
4
klf5/bteb2 target
4
target angiotensin
4

Similar Publications

ZAP is an antiviral protein that binds to and depletes viral RNA, which is often distinguished from vertebrate host RNA by its elevated CpG content. Two ZAP cofactors, TRIM25 and KHNYN, have activities that are poorly understood. Here, we show that functional interactions between ZAP, TRIM25 and KHNYN involve multiple domains of each protein, and that the ability of TRIM25 to multimerize via its RING domain augments ZAP activity and specificity.

View Article and Find Full Text PDF

Background: Multiple Myeloma (MM) is the second most common hematological malignancy, characterized by the accumulation of monoclonal plasmocytes in the bone marrow. Despite advancements with proteasome inhibitors, immunomodulatory agents, and CD38-targeting antibodies, MM remains largely incurable due to resistant clones and frequent relapses. The success of the proteasome inhibitor bortezomib (BTZ) in MM treatment highlights the critical role of the ubiquitin-proteasome system (UPS) in this disease.

View Article and Find Full Text PDF

Understanding the genetic basis of drought tolerance in safflower (Carthamus tinctorius L.) is essential for developing resilient varieties. In this study, we performed a genome-wide association study (GWAS) using DArTseq markers to identify marker-trait associations (MTAs) linked to drought tolerance across 90 globally diverse safflower genotypes.

View Article and Find Full Text PDF

LncRNA DNM1P35 sponges hsa-mir-326 to promote ovarian cancer progression.

Sci Rep

December 2024

Department of Gynaecology, The Affiliated Wuxi People's Hospital of Nanjing Medical University/Wuxi Medical Center, Nanjing Medical University/Wuxi People's Hospital, 299 Qingyang Road, Wuxi, 214023, Jiangsu, China.

Long non-coding RNAs (lncRNAs) have emerged as crucial regulators in cancer progression. We found lncRNA DNM1P35 is elevated in ovarian tumors compared to normal tissues, and demonstrated that lncRNA DNM1P35 promoted cancer cell proliferation, migration and invasion in SK-OV-3 and OVCAR-3 cell lines. Furthermore, lncRNA DNM1P35 also facilitated the epithelial-mesenchymal transition (EMT) of ovarian cancer cells.

View Article and Find Full Text PDF

Lung cancer ranks as the most prevalent malignant neoplasm worldwide, contributing significantly to cancer-related mortality. Stemness is a well-recognized factor underlying radiotherapy resistance, recurrence and metastasis in non-small-cell lung cancer (NSCLC) patients. Our prior investigations have established the role of IQ motif containing GTPase-activating protein 3 (IQGAP3) in mediating radiotherapy resistance in lung cancer, but its impact on lung cancer stemness remains unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!