Macrophages/microglial cells in patients with cerebral malaria.

Eur Cytokine Netw

Institute of Brain Research, University of Tuebingen Medical School, Calwer Str. 3, D-72076 Tuebingen, Germany.

Published: January 2003

Cerebral malaria is a life threatening sequel of Plasmodium falciparum infection and contributes significantly to malaria mortality, especially among children. Accumulation of macrophages and proliferation of microglial cells play key roles in cerebral malaria and are thought to contribute to the pathophysiological alterations observed in these patients, which include enhanced adherence of infected erythrocytes to the cerebral vasculature by expression and secretion of proinflammatory molecules, disruption of the blood-brain barrier, recruitment of other inflammatory cells to the lesion site. In this review, recent advances in the understanding of the involvement of macrophages/microglial cells in the development of cerebral malaria are summarized.

Download full-text PDF

Source

Publication Analysis

Top Keywords

cerebral malaria
16
macrophages/microglial cells
8
cerebral
5
malaria
5
cells patients
4
patients cerebral
4
malaria cerebral
4
malaria life
4
life threatening
4
threatening sequel
4

Similar Publications

Contribution of Magnetic Resonance Imaging Studies to the Understanding of Cerebral Malaria Pathogenesis.

Pathogens

November 2024

Centre de Résonance Magnétique Biologique et Médicale (CRMBM) UMR 7339, Faculté des Sciences Médicales et Paramédicales la Timone, Aix-Marseille Université, CNRS, 13055 Marseille, France.

Cerebral malaria (CM), the most lethal clinical syndrome of infection, mostly affects children under 5 in sub-Saharan Africa. CM is characterized by seizures and impaired consciousness that lead to death in 15-20% of cases if treated quickly, but it is completely fatal when untreated. Brain magnetic resonance imaging (MRI) is an invaluable source of information on the pathophysiology of brain damage, but, due to limited access to scanners in endemic regions, only until very recently have case reports of CM patients studied with advanced MRI methods been published.

View Article and Find Full Text PDF

Malaria monoclonals block brain binding.

Trends Parasitol

January 2025

Department of Infectious Diseases, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia; Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia.

In Plasmodium falciparum malaria, infected cells accumulate in blood vessels of organs, including the brain. Recently, Reyes et al. identified monoclonal antibodies that stop infected cells from binding to the endothelial protein C receptor (EPCR) in a model of brain blood vessels.

View Article and Find Full Text PDF

Interferon γ-induced protein 10 kDa (IP-10) or C-X-C motif chemokine 10 (CXCL10) is produced and secreted from specific leukocytes such as neutrophils, eosinophils, and monocytes, which play key roles in the immune response to Plasmodium infections. This systematic review aimed to collate and critically appraise the current evidence on IP-10 levels in malaria patients. It provided insights into its role in malaria pathogenesis and potential as a biomarker for Plasmodium infections and disease severity.

View Article and Find Full Text PDF
Article Synopsis
  • Malaria has surged in sub-Saharan Africa due to disruptions from the Covid-19 pandemic, leading to severe cases like cerebral malaria and acute kidney injury.
  • A 22-year-old male from Chad, who presented with confusion and had a history of travel to an endemic area, was initially misdiagnosed but later confirmed to have malaria with severe symptoms.
  • Successful treatment included intravenous artesunate and hemodialysis, and the patient was discharged after 20 days, highlighting the need for quick diagnosis and effective management of malaria complications.
View Article and Find Full Text PDF

malaria affects millions of people in certain regions of the world, with neurological involvement and/or cerebral malaria as potential manifestations. Brain magnetic resonance imaging (MRI) abnormalities have been well-documented in cerebral malaria. However, MRI abnormalities in non-cerebral malaria, especially in neurologically asymptomatic patients, are not well understood and have been less frequently reported, especially in non-endemic regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!