Downregulation of kainate receptors in the hippocampus following repeated seizures in immature rats.

Brain Res Dev Brain Res

Department of Neurology, Harvard Medical School, Center for Research in Pediatric Epilepsy, Children's Hospital, Boston, MA 02115, USA.

Published: June 2002

There are significant differences in seizure-induced sequelae between the immature and mature brain. We have previously demonstrated that repeated doses of the chemoconvulsant kainic acid is associated with a progressive increase in severity of seizures in adult animals while in immature rats the opposite occurs; seizure intensity decreases with subsequent doses of kainic acid. Likewise, repeated kainic acid seizures causes severe hippocampal damage in mature rats while in the immature brain serial administration of kainic acid causes no demonstrable cell loss. Here we show that recurrent kainic acid seizures in immature rats are associated with a downregulation of kainate receptor binding. No histological damage was noted in any of the rats exposed to recurrent seizures. Furthermore, when tested for visual-spatial memory immature rats with recurrent kainate seizures did not differ from controls. The downregulation of KA receptors following repeated exposure to KA suggests that the decrease in glutamate receptor density might account in part for the observed lack of neuronal loss and decrease in seizure intensity in these animals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0165-3806(02)00358-9DOI Listing

Publication Analysis

Top Keywords

kainic acid
20
immature rats
16
downregulation kainate
8
seizures immature
8
seizure intensity
8
acid seizures
8
seizures
6
immature
6
rats
6
kainic
5

Similar Publications

Activation of glutamine synthetase (GS) as a new strategy for the treatment of major depressive disorder and other GS-related diseases.

Acta Pharmacol Sin

January 2025

Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Medical Science, Tyrosine Peptide Multiuse Research Group, Anti-aging Bio Cell Factory Regional Leading Research Center, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea.

Glutamine synthetase (GS) plays a crucial role in the homeostasis of the glutamate-glutamine cycle in the brain. Hypoactive GS causes depressive behaviors. Under chronic stress, GS has no change in expression, but its activity is decreased due to nitration of tyrosine (Tyr).

View Article and Find Full Text PDF

Regulation of Glutamate Transporter Type 1 by TSA and the Antiepileptic Mechanism of TSA.

Neurochem Res

January 2025

Huazhong University of Science and Technology, Tongji Medical College, Wuhan, Hubei, 430000, China.

Epilepsy (EP) is a neurological disorder characterized by abnormal, sudden neuronal discharges. Seizures increase extracellular glutamate levels, causing excitotoxic damage. Glutamate transporter type 1 (GLT-1) and its human homologue excitatory amino acid transporter-2 (EAAT2) clear 95% of extracellular glutamate.

View Article and Find Full Text PDF

Evaluation of Brain Impairment Using Proton Exchange Rate MRI in a Kainic Acid-Induced Rat Model of Epilepsy.

Mol Imaging Biol

January 2025

Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.

Purpose: Proton exchange rate (K) is a valuable biophysical metric. K MRI may augment conventional structural MRI by revealing brain impairments at the molecular level. This study aimed to investigate the feasibility of K MRI in evaluating brain injuries at multiple epilepsy stages.

View Article and Find Full Text PDF

Psychiatric disorders, including anxiety and depression, are highly comorbid in people with epilepsy. However, the mechanisms mediating the shared pathophysiology are currently unknown. There is considerable evidence implicating the basolateral amygdala (BLA) in the network communication of anxiety and fear, a process demonstrated to involve parvalbumin-positive (PV) interneurons.

View Article and Find Full Text PDF

Hydrogen inhalation exerts anti-seizure effects by preventing oxidative stress and inflammation in the hippocampus in a rat model of kainic acid-induced seizures.

Neurochem Int

December 2024

School of Medicine, Fu Jen Catholic University, New Taipei City, 24205, Taiwan; Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City, 33303, Taiwan. Electronic address:

Hydrogen gas (H) is an antioxidant with demonstrated neuroprotective efficacy. In this study, we administered H via inhalation to rats to evaluate its effects on seizures induced by kainic acid (KA) injection and the underlying mechanism. The animals were intraperitoneally injected with KA (15 mg/kg) to induce seizures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!