The control of neural stem cells by morphogenic signals.

Curr Opin Genet Dev

Laboratory of Molecular Biology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 36 Convent Drive MSC 4092, Bethesda, Maryland 20892-4092, USA.

Published: August 2002

A complex orchestration of stem-cell specification, expansion and differentiation is required for the proper development of the nervous system. Although progress has been made on the role of individual genes in each of these processes, there are still unresolved questions about how gene function translates to the dynamic assembly of cells into tissues. Recently, stem-cell biology has emerged as a bridge between the traditional fields of cell biology and developmental genetics. In addition to their potential therapeutic role, stem cells are being exploited as experimental 'logic chips' that integrate information and exhibit self-organizing properties. Recent studies provide new insights on how morphogenic signals coordinate major stem cell decisions to regulate the size, shape and cellular diversity of the nervous system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0959-437x(02)00329-5DOI Listing

Publication Analysis

Top Keywords

stem cells
8
morphogenic signals
8
nervous system
8
control neural
4
neural stem
4
cells morphogenic
4
signals complex
4
complex orchestration
4
orchestration stem-cell
4
stem-cell specification
4

Similar Publications

Introduction: Antisense oligonucleotides (ASOs) have shown promise in reducing amyloid precursor protein (APP) levels in neurons, but their effects in astrocytes, key contributors to neurodegenerative diseases, remain unclear. This study evaluates the efficacy of APP ASOs in astrocytes derived from an individual with Down syndrome (DS), a population at high risk for Alzheimer's disease (AD).

Methods: Human induced pluripotent stem cells (hiPSCs) from a healthy individual and an individual with DS were differentiated into astrocytes.

View Article and Find Full Text PDF

ssp. is well known as a Cd hyperaccumulator. Yet, understanding how this plant survives in a high Cd environment without appearing toxicity signs is far from complete.

View Article and Find Full Text PDF

Tuberous Sclerosis Complex (TSC) is a debilitating developmental disorder characterized by a variety of clinical manifestations. While benign tumors in the heart, lungs, kidney, and brain are all hallmarks of the disease, the most severe symptoms of TSC are often neurological, including seizures, autism, psychiatric disorders, and intellectual disabilities. TSC is caused by loss of function mutations in the TSC1 or TSC2 genes and consequent dysregulation of signaling via mechanistic Target of Rapamycin Complex 1 (mTORC1).

View Article and Find Full Text PDF

Activation of bone morphogenetic protein (BMP) 4 signaling promotes the survival of retinal ganglion cell (RGC) after acute injury. In this study, we investigated the role of the BMP4 signaling pathway in regulating the degeneration of retinal ganglion cells (RGCs) in a mouse glaucoma model and its potential application in retinal stem cell. Our results demonstrate that BMP4-GPX4 not only reduces oxidative stress and iron accumulation but also promotes neuroprotective factors that support the survival of transplanted RSCs into the host retina.

View Article and Find Full Text PDF

Introduction: Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a very rare disease, with unique diagnostic challenges and often dismal outcome. There are no widely accepted treatment guidelines available. Lymphoma-like regimens with or without autologous or allogenic transplantation were the cornerstone of most therapeutic concepts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!