The feasibility of unprocessed, granulocyte colony-stimulating factor (G-CSF)-mobilized whole blood (WB) as an alternative stem cell source for autologous stem cell transplantation was studied. Forty-seven relapsed non-Hodgkin's lymphoma (NHL) patients entered the study. After two or three ifosfamide, methotrexate and etoposide (IMVP) courses, 1 l of G-CSF-mobilized WB was collected and stored refrigerated for 72 h. Meanwhile, BAM conditioning was given: BCNU (carmustine) 300 mg/m(2), high-dose cytarabine 6000 mg/m(2) and melphalan 140 mg/m(2). Toxicity, haematological recovery and survival were assessed and compared with peripheral blood stem cell transplantation (PBSCT) and bone marrow transplantation (BMT) reference groups. High-dose G-CSF (2 x 12 microg/kg/d) gave the best mobilization results. Haematological recovery was related to the WB CD34+ content. A CD34+ threshold of >or= 0.3 10(6)/kg, obtained in 90% of patients using high-dose G-CSF, correlated with adequate recovery: absolute neutrophil count (ANC) > 0.5 x 10(9)/l: median 12 d (range 9-19). Platelet recovery > 20 and > 50 x 10(9)/l was 19 (11-59) and 30 d (14 not reached) respectively. Overall survival of patients < 60 years was 57% at 4 years and event-free survival was 32%. Survival was comparable with PBSCT and BMT after BEAM (BCNU, etoposide, cytarabine, melphalan). Remarkably, haematological recovery after BAM + WB was rapid and comparable (ANC) or slightly prolonged (platelets) in comparison with BEAM + PBSCT, despite a 10-20 times lower CD34+ cell dose in the WB graft. In conclusion, transplantation of WB containing >or= 0.3 x 10(6)/kg CD34+ cells after BAM conditioning is a safe procedure, and offers a fully equivalent and less costly alternative for PBSC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1365-2141.2002.03636.x | DOI Listing |
STAR Protoc
January 2025
Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA. Electronic address:
Hematopoietic stem cells (HSCs) generate blood and immune cells. Here, we present a protocol to differentiate human pluripotent stem cells (hPSCs) into hematopoietic progenitors that express the signature HSC transcription factors HLF, HOXA5, HOXA7, HOXA9, and HOXA10. hPSCs are dissociated, seeded, and then sequentially differentiated into posterior primitive streak, lateral mesoderm, artery endothelium, hemogenic endothelium, and hematopoietic progenitors through the sequential addition of defined, serum-free media.
View Article and Find Full Text PDFCell Rep
January 2025
Division of Cell Regulation, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Division of Cell Engineering, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Laboratory for Stem Cell Therapy, Faculty of Medicine, Tsukuba University, Ibaraki, Japan. Electronic address:
Hematopoietic stem cells (HSCs) possess the capacity to regenerate the entire hematopoietic system. However, the precise HSC dynamics in the early post-transplantation phase remain an enigma. Clinically, the initial hematopoiesis in the post-transplantation period is critical, necessitating strategies to accelerate hematopoietic recovery.
View Article and Find Full Text PDFJpn J Clin Oncol
January 2025
Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, 47-1 Nodayama, Medeshima-Shiode, Natori, Miyagi 981-1293, Japan.
A Japanese woman with Li-Fraumeni syndrome in her 40s underwent comprehensive genetic profiling accompanied by germline data using the Oncoguide NCC Oncopanel, but no germline pathogenic variants in the tumor suppressor gene TP53 were detected. However, careful examination of additional data in the report suggested the presence of a large TP53 deletion. Custom targeting next-generation sequencing and nanopore sequencing revealed a 3.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Division of Hematology/Oncology, The University of Texas Health Sciences Center at Houston, McGovern Medical School, 6431 Fannin Street, MSB 5.216, Houston, TX, 77030, USA.
The established protocol for the management of acute myeloid leukemia (AML) has traditionally involved the administration of induction chemotherapy, followed by consolidation chemotherapy, and subsequent allogeneic stem cell transplantation for eligible patients. However, the prognosis for individuals with relapsed and refractory AML remains unfavorable. In response to the necessity for more efficacious therapeutic modalities, targeted immunotherapy has emerged as a promising advancement in AML treatment.
View Article and Find Full Text PDFInt Urol Nephrol
January 2025
Department of Nephrology, Jiangxi Medical College, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China.
Purpose: To clarify the causal association between cardiovascular proteins and diabetic nephropathy (DN) in Europeans.
Methods: The large genome-wide association study data of cardiovascular proteins and DN were used for this two-sample Mendelian randomization (MR) analysis. We took the Inverse variance weighted (IVW) as the primary method.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!