Sustaining fisheries yields over evolutionary time scales.

Science

Marine Sciences Research Center, State University of New York, Stony Brook, NY 11794-5000, USA.

Published: July 2002

Fishery management plans ignore the potential for evolutionary change in harvestable biomass. We subjected populations of an exploited fish (Menidia menidia) to large, small, or random size-selective harvest of adults over four generations. Harvested biomass evolved rapidly in directions counter to the size-dependent force of fishing mortality. Large-harvested populations initially produced the highest catch but quickly evolved a lower yield than controls. Small-harvested populations did the reverse. These shifts were caused by selection of genotypes with slower or faster rates of growth. Management tools that preserve natural genetic variation are necessary for long-term sustainable yield.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.1074085DOI Listing

Publication Analysis

Top Keywords

sustaining fisheries
4
fisheries yields
4
yields evolutionary
4
evolutionary time
4
time scales
4
scales fishery
4
fishery management
4
management plans
4
plans ignore
4
ignore potential
4

Similar Publications

Background: Aquaculture systems that sporadically depend on antibiotics can contribute to the development of adverse effects on the fish, microbial flora and the environment. This study sought to investigate the impacts of extended oxytetracycline supplementation on the freshwater stinging catfish through a multi-biomarker approach.

Methods: A total of 300 (20 ± 0.

View Article and Find Full Text PDF

Understanding the spatial ecology of commercially exploited species is vital for their conservation. Atlantic bluefin tuna (Thunnus thynnus, ABT) are increasingly observed in northeast Atlantic waters, yet knowledge of these individuals' spatial ecology remains limited. We investigate the horizontal and vertical habitat use of ABT (158 to 241 cm curved fork length; CFL) tracked from waters off the United Kingdom (UK) using pop-up satellite archival tags (n = 63).

View Article and Find Full Text PDF

Beyond despair: Leveraging ecosystem restoration for psychosocial resilience.

Proc Natl Acad Sci U S A

January 2025

Division of Marine Science and Conservation, Nicholas School of the Environment, Duke University Marine Lab, Beaufort, NC 28516.

Ecosystem restoration has historically been viewed as an ecological endeavor, but restoration possesses significant, yet largely untapped, potential as a catalyst for personal and social transformation. We highlight the opportunity for restoration to enhance community resilience by increasing agency and collective action and countering the pervasive perception that we are powerless witnesses to environmental decline. In this perspective, we take a "bright spots" approach and highlight successful examples of ecosystem restoration that have helped to nurture a sense of place, foster optimism, and cultivate stronger and more diverse social networks.

View Article and Find Full Text PDF

Unlabelled: and are recognized as significant opportunistic pathogens affecting aquatic animals and humans. However, their infections in amphibians are poorly documented, and their pathogenicity to the Chinese spiny frog () remains unexplored. This study investigated an outbreak of putrid-skin disease among on a farm in Lishui City, Zhejiang Province, China.

View Article and Find Full Text PDF

An overview of recent progress in the molecular mechanisms and key biological macromolecules involved in limb regeneration of decapods.

Int J Biol Macromol

December 2024

College of Marine Science, Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf Ocean Development Research Center, Beibu Gulf University, Qinzhou, Guangxi, China. Electronic address:

Understanding the molecular mechanisms of limb regeneration in decapods can significantly enhance aquaculture production by improving survival and growth, as well as facilitating the development of lab-grown crustacean meat as a sustainable protein source. This review explores the molecular mechanisms of decapod limb regeneration, focusing on the key signaling pathways, genes, and proteins involved in this process. The initial stages of regeneration involve immune response and hemolymph coagulation, which are regulated via signaling pathways such as Toll, MAPK, IMD, and JAK/STAT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!