In this paper we describe the syntheses of the tetraoxygenated triarylmethyl (trityl) radical 14 and the tetrathiatriarylmethyl (trityl) radicals 15 and 16. The syntheses include new and improved preparations of the key intermediate compounds 1 and 2. The new route to compound 2 is noteworthy for its efficiency and its avoidance of the highly toxic compound phosgene as well as the isolation of the air-sensitive 1,2,4,5-benzenetetrathiol.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jo011068f | DOI Listing |
Org Lett
January 2025
College of Chemistry, International Phosphorus Laboratory, Zhengzhou University, Zhengzhou 450001, P. R. China.
We synthesized a series of polychlorinated trityl radical substituted phenylphosphines. Through UV-vis photoluminescence (PL) spectroscopy and cyclic voltammetry, we explored the influence of the chemical modifications (oxidation/reduction, coordination, and methylation) of the phosphorus center(s) on tuning the optical and redox properties of the tris(2,4,6-trichlorophenyl)methyl (TTM) radical framework. Those compounds hold promise for applications in coordination chemistry and luminescent materials, particularly in systems where both radical and phosphine-based functionalities can be leveraged for innovative properties.
View Article and Find Full Text PDFJ Magn Reson
December 2024
Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Electronic address:
We have prepared trityl radicals with protons at the positions of the -COOH group in the phenyl rings and examined their EPR spectra, which show large - hyperfine couplings, and their dynamic nuclear polarization (DNP) Zeeman field profiles . By assessing these polarizing agents for high-field and Overhauser effect DNP, we gain insight into the roles that these hyperfine couplings and other molecular properties play in the DNP performance of these radicals. Interestingly, we do not observe OE DNP in any of the three molecules we examined.
View Article and Find Full Text PDFPhys Chem Chem Phys
November 2024
Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark.
Dynamic nuclear polarization (DNP) has proven to be a powerful technique to enhance nuclear spin polarization by transferring the much higher electron spin polarization to nuclear spins prior to detection. While major attention has been devoted to high-field applications with continuous microwave irradiation, the introduction of fast arbitrary waveform generators is gradually increasing opportunities for the realization of pulsed DNP. Here, we describe how static-powder DNP pulse sequences may systematically be designed using single-spin vector effective Hamiltonian theory.
View Article and Find Full Text PDFJ Am Chem Soc
November 2024
The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.
Reactive sulfur species (RSS) including persulfides (RSSHs), biothiols, and hydrogen sulfide (HS) are key regulators in various physiological processes. To better understand the symbiotic relationship and interconversion of these RSS, it is highly desirable but challenging to develop analytical techniques that are capable of detecting and quantifying them. Herein, we report the rational design and synthesis of novel trityl-radical-based electron paramagnetic resonance (EPR) probes dubbed CT02-TNB and OX-TNB.
View Article and Find Full Text PDFSci Adv
October 2024
Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark.
It is demonstrated that the time evolution of the electron-nuclear polarization transfer process during pulsed dynamic nuclear polarization (DNP) can be reversed on a microsecond timescale, leading to the observation of DNP echoes. The DNP echoes are induced by consecutive application of two pulse trains that produce effective Hamiltonians that differ only in the sign of the effective hyperfine coupling. The experiments have been performed on a frozen solution of trityl radicals in water/glycerol on a homebuilt X-band electron paramagnetic resonance/DNP spectrometer at 80 kelvins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!