This study was undertaken to evaluate the role of reactive oxygen species (ROS) and lipid peroxidation in chemical hypoxia in opossum kidney (OK) cells and rabbit renal cortical slices. Chemical hypoxia was induced by incubating cells or slices with antimycin A, an inhibitor of mitochondrial electron transport. Exposure of OK cells to chemical hypoxia resulted in a time-dependent cell death and parallel depletion of intracellular ATP. In OK cells subjected to chemical hypoxia, the generation of ROS was increased, and this was prevented by the H(2)O(2) scavenger catalase, but not by the hydroxyl radical scavenger dimethylthiourea (DMTU). Catalase prevented OK cell death induced by chemical hypoxia, but [Cu, Zn]-superoxide dismutase (SOD) and DMTU were not effective. The iron chelators deferoxamine and phenanthroline prevented chemical hypoxia-induced OK cell death, but the potent antioxidants N,N'-diphenyl-p-phenylenediamine (DPPD) and butylated hydroxyanisole (BHA) showed no beneficial effect. Antimycin A in OK cells increased lipid peroxidation, which was prevented by DPPD and phenanthroline. In rabbit renal cortical slices, antimycin A caused an increase in LDH release and lipid peroxidation, and these effects were prevented by ROS scavengers (SOD, catalase, and DMTU), iron chelator (deferoxamine), and antioxidants (DPPD and BHA). However, in primary cultured rabbit proximal tubular cells the antimycin A-induced cell death was not altered by antioxidants. The extent of ATP depletion was similar in renal cortical slices and primary cultured cells treated with antimycin A. These results indicate that chemical hypoxia-induced cell injury is not directly resulted from lipid peroxidation in OK cells, but this cell injury is mediated by lipid peroxidation in rabbit renal cortical slices. This discrepancy may be due to the difference in cell preparation (freshly prepared tubules and cultured cells).

Download full-text PDF

Source
http://dx.doi.org/10.1159/000063702DOI Listing

Publication Analysis

Top Keywords

renal cortical
20
cortical slices
20
lipid peroxidation
20
chemical hypoxia
20
rabbit renal
16
cell death
16
chemical hypoxia-induced
12
hypoxia-induced cell
12
cell injury
12
cells
10

Similar Publications

Blood pressure measurement is important in monitoring hypertension. However, blood pressure does not provide much information about renal condition in treated hypertension. This study aimed to evaluate renal oxygenation in hypertensive patients using T2* mapping.

View Article and Find Full Text PDF

Microalbuminuria is the earliest clinical abnormality in diabetic kidney disease. High glucose (HG) concentrations are associated with the induction of oxidative stress in podocytes, leading to disruption of the glomerular filtration barrier. Our recent study revealed a significant decrease in the membrane-bound fraction of Klotho in podocytes that were cultured under HG conditions.

View Article and Find Full Text PDF

Fibronectin glomerulopathy (FG) is caused by fibronectin 1 () gene mutations. A renal biopsy was performed on a 4-year-old girl with incidentally discovered proteinuria (150 mg/dL); her family history of renal disease was negative. Markedly enlarged glomeruli (mean glomerular diameter: 196 μm; age-matched controls: 140 μm), α-SMA-positive and Ki-67-positive mesangial cell proliferation (glomerular proliferation index 1.

View Article and Find Full Text PDF

Integrative Analysis of Radiation-Induced Senescence-Associated Secretory Phenotype Factors in Kidney Cancer Progression.

Genes (Basel)

January 2025

Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA.

Background: Ionizing radiation (IR) is a well-known inducer of cellular senescence and the senescence-associated secretory phenotype (SASP). SASP factors play dual roles in cancer, either promoting or inhibiting its development. This study investigates IR-induced SASP factors specifically secreted by renal cortical epithelial (RCE) cells and their role in promoting renal cell carcinoma (RCC) progression.

View Article and Find Full Text PDF

Background: Congenital mesoblastic nephroma represents 3-10% of all pediatric renal tumors. With the advancement of ultrasound diagnostics and magnetic resonance imaging, the diagnosis of this renal neoplasm is increasingly being established prenatally and at birth. It usually presents as a benign tumor, but it can severely affect pregnancy outcomes, contributing to perinatal morbidity and mortality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!