The straight segment (S3) of the proximal tubule is predominantly damaged during renal ischemia-reflow, whereas medullary thick ascending limbs (mTALs) are principally affected in other models of hypoxic acute tubular necrosis (ATN). Since the latter injury pattern largely depends on the extent of reabsorptive activity during hypoxic stress, we hypothesized that proximal tubular damage might attenuate downstream mTAL injury by means of diminished distal solute delivery for reabsorption. In isolated rat kidneys perfused for 90 min with oxygenated Krebs-Henseleit solution, mTAL necrosis developed in 75 +/- 3% of tubules in the mid-inner stripe of the outer medulla. By contrast, S3 segments in the outer stripe were minimally affected, with tubular fragmentation involving some 5 +/- 2% of tubules. In kidneys subjected in vivo to proximal tubular injury and subsequently used for isolated perfusion studies, the injury pattern was inverted: following 20 and 30 min ischemia and reflow for 24 h, S3 fragmentation rose to 18 +/- 16% and 72 +/- 13%, while mTAL damage was reduced to 33 +/- 10 and 24 +/- 8%, respectively. In kidneys subjected in vivo to D-serine S3 necrosis rose to 100%, while mTAL damage fell to 1 +/- 1% (p < 0.001). Substantial S3 tubular collapse (involving approximately 30% of tubules) and inner stripe interstitial hemorrhage were also noted, exclusively in kidneys subjected to ischemia-reflow. Proximal tubular necrosis alone or in combination with collapse inversely correlated with mTAL necrosis (R = -0.51 and -0.72, respectively, p < 0.003). This cogent inverse association might imply that disruption of the proximal nephron attenuates downstream mTAL necrosis by a reduction of distal tubular reabsorptive workload.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000063700 | DOI Listing |
Clin Nephrol Case Stud
January 2025
Department of Medicine.
Minimal change disease (MCD) accounts for 10 - 15% of idiopathic nephrotic syndromes in adults. Chronic hepatitis C virus (HCV) infection is rarely ascribed as a cause of MCD and was previously associated with interferon-based therapy. MCD in treatment-naïve chronic HCV infection is extremely rare, with only 3 cases reported in the literature.
View Article and Find Full Text PDFFunct Integr Genomics
January 2025
Department of Emergency and Critical Care Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, People's Republic of China.
Narciclasine (Ncs) was effective in sepsis management due to its antioxidant properties. The present study dissected the protective effects of Ncs against sepsis-associated acute kidney injury (SA-AKI) and the molecular mechanisms. The SA-AKI mice were developed using cecum ligation and puncture and pretreated with Ncs and adenoviruses.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pediatrics, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe Mikicho, Kidagun, 761-0793, Kagawa, Japan.
Acute kidney injury (AKI) has been reported to occur in 30-70% of asphyxiated neonates. Hydrogen (H) gas became a major research focus in neonatal medicine after the identification of its robust antioxidative properties. However, the ability of H gas to ameliorate AKI is unknown.
View Article and Find Full Text PDFInflamm Res
January 2025
Department of Nephrology, First Affiliated Hospital of Naval Medical University, Shanghai Changhai Hospital, Shanghai, China.
Background: Chronic inflammation is well recognized as a key factor related to renal function deterioration in patients with diabetic kidney disease (DKD). Neutrophil extracellular traps (NETs) play an important role in amplifying inflammation. With respect to NET-related genes, the aim of this study was to explore the mechanism of DKD progression and therefore identify potential intervention targets.
View Article and Find Full Text PDFActa Physiol (Oxf)
February 2025
Department of Medicine, Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland.
Aim: Proteinuria is the most robust predictive factors for the progression of chronic kidney disease (CKD), and interventions targeting proteinuria reduction have shown to be the most effective nephroprotective treatments to date. While glomerular dysfunction is the primary source of proteinuria, its consequences extend beyond the glomerulus and have a profound impact on tubular epithelial cells. Indeed, proteinuria induces notable phenotypic changes in tubular epithelial cells and plays a crucial role in driving CKD progression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!