Background: Because inflammation induces oxidative stress, exhaled hydrogen peroxide (H(2)O(2)), which is a marker of oxidative stress, may be used as a non-invasive marker of airway inflammation in chronic obstructive pulmonary disease (COPD). There are no data on the circadian variability of exhaled H(2)O(2) in COPD patients.

Objective: The aim of this study was to investigate the variability of the H(2)O(2) concentration in breath condensate of stable COPD patients and of matched healthy control subjects.

Methods: We included 20 patients with stable mild COPD (forced expiratory volume in 1 s approximately 70% of predicted) and 20 healthy subjects, matched for age, sex and pack-years, all smokers or ex-smokers. Breath condensate was collected and its H(2)O(2) concentration determined fluorometrically three times on day 0 (9 and 12 a.m., and 3 p.m.) and once on days 1, 2, 3, 8 and 21.

Results: The mean H(2)O(2) concentration increased significantly during the day in both the patient and control groups (p = 0.02 and p < 0.01, respectively). Over a longer period up to 21 days, the mean concentration did not change in both groups. There was no significant difference between patients and controls. The mean coefficient of variation over 21 days was 45% in the patient group and 43% in the control group (p = 0.8).

Conclusions: The exhaled H(2)O(2) concentration increased significantly during the day in both stable COPD patients and controls. Over a period of 3 weeks, the mean H(2)O(2) concentration did not change and the variability within the subjects was similar in both groups.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000063622DOI Listing

Publication Analysis

Top Keywords

h2o2 concentration
20
stable copd
12
copd patients
12
variability exhaled
8
exhaled hydrogen
8
hydrogen peroxide
8
patients matched
8
matched healthy
8
oxidative stress
8
exhaled h2o2
8

Similar Publications

Ultrathin atomic layer deposited ceria films (< 20 nm) are capable of H2 heterolytic activation at room temperature, undergoing a significant reduction regardless of the absolute pressure, as measured under in-situ conditions by near ambient pressure X-ray photoelectron spectroscopy. ALD-ceria can gradually reduce as a function of H2 concentration under H2/O2 environments, especially for diluted mixtures below 10%. At room temperature, this reduction is limited to the surface region, where the hydroxylation of the ceria surface induces a charge transfer towards the ceria matrix, reducing Ce4+ cations to Ce3+.

View Article and Find Full Text PDF

RVP, a water-soluble triple-helix galactoglucomannan, was successfully extracted from the fruiting body of Russula virescens using an alkali extraction method. Physicochemical properties analysis showed that the protein content of RVP was low (0.95%).

View Article and Find Full Text PDF

Probing the Photochemical Formation of Hydroxyl Radical from Dissolved Organic Matter: Insights into the HO-Dependent Pathway.

Environ Sci Technol

January 2025

Zachry Department of Civil & Environmental Engineering, Texas A&M University, College Station, Texas 77843, United States.

This study quantifies the contribution of the HO-dependent pathway to hydroxyl radical (OH) production from the photolysis of dissolved organic matter (DOM). OH formation rates were cross-validated using benzoate and terephthalate as probe compounds for diverse DOM sources (reference isolates and whole waters). Catalase addition revealed that the HO-dependent pathway accounts for 10-20% of the total OH production in DOM isolate materials, but no significant correlation was observed between ambient iron (Fe) concentrations and HO-dependent OH formation.

View Article and Find Full Text PDF

A polysaccharide from Morchella esculenta mycelia: Structural characterization and protective effect on antioxidant stress on PC12 cells against HO-induced oxidative damage.

Int J Biol Macromol

January 2025

State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China. Electronic address:

Morchella esculenta (L.) Pers. is considered a precious edible and medicinal fungus due to its strict growth environment requirements, difficult to cultivate, resulted in expensive in the market.

View Article and Find Full Text PDF

Pulsed-Current Operation Enhances HO Production on a Boron-Doped Diamond Mesh Anode in a Zero-Gap PEM Electrolyzer.

ChemSusChem

January 2025

Department of Chemical Engineering, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The, Netherlands.

A niobium (Nb) mesh electrode was coated with boron-doped diamond (BDD) using chemical vapor deposition in a custom-built hot-filament reactor. The BDD-functionalized mesh was tested in a zero-gap electrolysis configuration and evaluated for the anodic formation of HO by selective oxidation of water, including the analysis of the effects on Faradaic efficiency towards HO (FEH2O2) induced by pulsed electrolysis. A low electrolyte flow rate (V⋅) was found to result in a relatively high concentration of HO in single-pass electrolysis experiments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!