Until recently, the cis-acting signals required for replication of picornaviral RNAs were believed to be restricted to the 5' and 3' noncoding regions of the genome. However, an RNA stem-loop in the VP1-coding sequence of human rhinovirus type 14 (HRV-14) is essential for viral minus-strand RNA synthesis (K. L. McKnight and S. M. Lemon, RNA 4:1569-1584, 1998). The nucleotide sequence of the apical loop of this internal cis-acting replication element (cre) was critical for RNA synthesis, while secondary RNA structure, but not primary sequence, was shown to be important within the duplex stem. Similar cres have since been identified in other picornaviral genomes. These RNA segments appear to serve as template for the uridylylation of the genome-linked protein, VPg, providing the VPg-pUpU primer required for viral RNA transcription (A. V. Paul et al., J. Virol. 74:10359-10370, 2000). Here, we show that the minimal functional HRV-14 cre resides within a 33-nucleotide (nt) RNA segment that is predicted to form a simple stem-loop with a 14-nt loop sequence. An extensive mutational analysis involving every possible base substitution at each position within the loop segment defined the sequence that is required within this loop for efficient replication of subgenomic HRV-14 replicon RNAs. These results indicate that three consecutive adenosine residues (nt 2367 to 2369) within the 5' half of this loop are critically important for cre function and suggest that a common RNNNAARNNNNNNR loop motif exists among the cre sequences of enteroviruses and rhinoviruses. We found a direct, positive correlation between the capacity of mutated cres to support RNA replication and their ability to function as template in an in vitro VPg uridylylation reaction, suggesting that these functions are intimately linked. These data thus define more precisely the sequence and structural requirements of the HRV-14 cre and provide additional support for a model in which the role of the cre in RNA replication is to act as template for VPg uridylylation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC136355 | PMC |
http://dx.doi.org/10.1128/jvi.76.15.7485-7494.2002 | DOI Listing |
J Gen Virol
January 2025
Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan, ROC.
RNA structures that are functionally important are defined as -acting RNA elements because their functions cannot be compensated for in trans. The -acting RNA elements in the 3' UTR of coronaviruses are important for replication; however, the mechanism linking the -acting RNA elements to their replication function remains to be established. In the present study, a comparison of the biological processes of the interactome and the replication efficiency between the 3' UTR -acting RNA elements in coronaviruses, including severe acute respiratory syndrome coronavirus 2, suggests that (i) the biological processes, including translation, protein folding and protein stabilization, derived from the analysis of the -acting RNA element interactome and (ii) the architecture of the -acting RNA elements and their interactomes are highly correlated with coronavirus replication.
View Article and Find Full Text PDFViroids, small circular non-coding RNAs, act as infectious pathogens in higher plants, demonstrating high stability despite consisting solely of naked RNA. Their dependence of replication on host machinery poses the question of whether RNA modifications play a role in viroid biology. Here, we explore RNA modifications in the avocado sunblotch viroid (ASBVd) and the citrus exocortis viroid (CEVd), representative members of viroids replicating in chloroplasts and the nucleus, respectively, using LC - MS and Oxford Nanopore Technology (ONT) direct RNA sequencing.
View Article and Find Full Text PDFJ Virol
January 2025
Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada.
Unlabelled: Coronaviruses have large, positive-sense single-stranded RNA genomes that challenge conventional strategies for mutagenesis. Yeast genetics has been used to manipulate large viral genomes, including those of herpesviruses and coronaviruses. This method, known as transformation-associated recombination (TAR), involves assembling complete viral genomes from dsDNA copies of viral genome fragments via homologous recombination in .
View Article and Find Full Text PDFBiomol NMR Assign
January 2025
CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India.
In Arabidopsis thaliana, micro-RNA regulation is primarily controlled by DCL1, an RNase III enzyme, and its associated proteins. DCL1, together with DRB2, governs a specific group of miRNAs that induce the inhibition of target mRNA translation. DRB2 is a multi-domain protein containing two N-terminal dsRNA binding domains (dsRBD) separated by a linker, followed by an unstructured C-terminal tail.
View Article and Find Full Text PDFSci Rep
January 2025
USDA, Agricultural Research Service, US National Poultry Research Center, 934 College Station Road, Athens, GA, 30605, USA.
Marek's disease (MD), a T cell lymphoma disease in chickens, is caused by the Marek's disease virus (MDV) found ubiquitously in the poultry industry. Genetically resistant Line 6 (L6) and susceptible Line 7 (L7) chickens have been instrumental to research on avian immune system response to MDV infection. In this study we characterized molecular signatures unique to splenic immune cell types across different genetic backgrounds 6 days after infection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!