Recombination-activating genes (RAGs) play a critical role in V(D)J recombination machinery and their expression is specifically regulated during lymphocyte ontogeny. To elucidate the molecular mechanisms regulating murine RAG-2 expression, we examined a chromatin structure of 25-kb DNA segment adjacent to murine RAG-2 by analyzing DNase I hypersensitive (HS) sites. In a RAG-2-expressing murine pre-B cell line, three lymphoid cell-specific HS sites (HS1, HS2, and HS3) were identified. Among these HS sites, one HS site (HS3) that locates in the RAG-2 promoter was associated only with RAG-2-expressing cell lines. Using the transient enhanced green fluorescence protein reporter gene assays, we identified two enhancer elements in the 5'-upstream region of RAG-2 that corresponded to HS1 and HS2. One of the enhancer elements (D3) exhibited enhancer activity only in the lymphoid cell lines. Analysis of the transgenic mice carrying the enhanced green fluorescence protein-reporter gene linked with D3 revealed that D3 activated the reporter gene-expression in the primary lymphoid tissues, but not in the secondary lymphoid tissues or nonlymphoid tissues. D3 was active in CD4(-)CD8(-), but not in CD4(+)CD8(+) or CD4(+)CD8(-) thymocytes in the thymus, and also active in B220(+)IgM(-), but not in B220(+)IgM(+), cells in the bone marrow. Finally, our data suggested that C/EBP may bind to the D3 enhancer and function as one of the transcription factor(s) responsible for the enhancer activity. These results show that the tissue- and stage-specific expression of murine RAG-2 is regulated by alteration of the chromatin structure as well as cis-regulatory enhancer elements.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.169.2.873DOI Listing

Publication Analysis

Top Keywords

enhancer elements
16
chromatin structure
12
murine rag-2
12
hs1 hs2
8
cell lines
8
enhanced green
8
green fluorescence
8
enhancer activity
8
lymphoid tissues
8
enhancer
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!