The hemoflagellates, Trypanosoma spp. and Leishmania spp., are causal agents of a number of parasitic diseases having a major impact on humans and domestic animals over vast areas of the globe. Among the diseases are some of the most pernicious and deadly of human afflictions: African sleeping sickness, Chagas' disease, kala-azar, and Oriental sore. The organisms have complex, pleomorphic life cycles typically involving a vertebrate and an invertebrate host, the latter serving as a vector. In the vertebrate host, they are primarily blood and tissue parasites. In their transition from one host to another, the hemoflagellates undergo morphological, physiological, and biochemical changes that facilitate their growth and subsequent transmission. A major goal in the study of the hemoflagellates has been the cultivation in vitro of both vertebrate and invertebrate stages of the organisms. The first types of media used in their cultivation, and still useful for establishment of cultures, were undefined and contained a complex of ingredients. These gave way to semidefined formulations which included tissue culture media as a base and, as a next step, addition of tissue culture cells as a feeder layer to promote parasite growth. More recently developed media are completely defined, having replaced the feeder cells with various supplements. Serum, a sometimes-variable component of the media, can be replaced by various serum substitutes. This review focuses on the hemoflagellates that infect humans, describing stages in the development of media leading to the fully defined formulations that are now available for the cultivation of many of these organisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC118086 | PMC |
http://dx.doi.org/10.1128/CMR.15.3.374-389.2002 | DOI Listing |
Int J Nanomedicine
January 2025
Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China.
Introduction: Cystic echinococcosis (CE), a chronic disabling parasitic zoonosis, poses a great threat to public health and livestock production and causes huge economic losses globally. The commercial Quil-A-adjuvanted Eg95 vaccine was empirically effective for CE control; however, it is expensive and has side effects and insufficient immunity.
Purpose: This study aimed to employ a novel adjuvant consisting of a delivery system and an immune potentiator and assess its adjuvanticity to Eg95 antigen, thereby developing a safe and cost-effective novel vaccine against the disease.
Eur J Public Health
January 2025
Health Protection and Communicable Diseases Control Department, Ministry of Public Health, Doha, Qatar.
Preventing local transmission of malaria from imported cases is crucial for achieving and maintaining malaria elimination. This study aimed to investigate the epidemiological characteristics of imported malaria cases and assess the distribution of malaria vectors in Qatar. Data from January 2016 to December 2022 on imported malaria, including demographic and epidemiological characteristics, travel-related information, and diagnostic results, were collected and analysed using descriptive statistics.
View Article and Find Full Text PDFParasit Vectors
January 2025
Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Str. 7, 14163, Berlin, Germany.
Background: Faecal egg counts (FECs) are essential for diagnosing helminth infections and guiding treatment decisions. For camels, no evaluations of coproscopic methods regarding precision, sensitivity and correlation between individual and pooled faecal samples are currently available.
Methods: Here, 410 camel faecal samples were collected in 2022 from South Darfur State, Sudan, and analysed to compare the semi-quantitative flotation, McMaster and Mini-FLOTAC methods in terms of precision, sensitivity, inter-rater reliability and helminth egg count correlations, as well as the effects of pooling samples.
Malar J
January 2025
Centre for Biotechnology Research and Development, Kenya Medical Research Institute (KEMRI), Nairobi, Kenya.
Background: The current study sought to re-evaluate malaria prevalence, susceptibility to artemisinin-based combination therapy (ACT), transmission patterns and the presence of malaria vectors in the Kikuyu area of the Kenyan Central highlands, a non-traditional/low risk malaria transmission zone where there have been anecdotal reports of emerging malaria infections.
Methods: Sampling of adult mosquitoes was done indoors, while larvae were sampled outdoors in June 2019. The malaria clinical study was an open label non-randomized clinical trial where the efficacy of one ACT drug, was evaluated in two health facilities.
Clin Transl Med
January 2025
Allergy Center, Department of Otolaryngology, Affiliated Eye and ENT Hospital, Fudan University, Shanghai, China.
Background: House dust mite (HDM) is the leading allergen for allergic rhinitis (AR). Although allergic sensitisation by inhaled allergens renders susceptible individuals prone to developing AR, the molecular mechanisms driving this process remain incompletely elucidated.
Objective: This study aimed to elucidate the molecular mechanisms underlying HDM-induced AR.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!