A tight binding grand canonical Monte Carlo simulation of the adsorption of selenium in silicalite-1 zeolite is presented. The calculated adsorption-desorption isotherms exhibit characteristic features of a first order transition, unexpected for adsorption in a microporous system with pore size of the order of 0.5 to 0.6 nm. We analyze this behavior as a result of the favored twofold coordinated chain structure of selenium that grows inside the complex three-dimensional microchannel network of silicalite. This analysis is confirmed by simpler calculations of a lattice gas-type model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.89.016101 | DOI Listing |
Inorg Chem
January 2025
State Key Laboratory of Tea Biology and Utilization, Agricultural Photocatalysis Laboratory, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, China.
The green and facile biobased functional materials have attracted great attention due to the promising potential to deal with the water pollution of toxic selenium ions that act as a serious threat to human health and the ecological environment. The development of cheap and eco-friendly approaches to remove SeO is of great significance for the safety of drinking water. However, there are some disadvantages in most of the employed methods, such as poor removal capability, high cost, and unsustainability.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Energy Engineering, Hanyang University, Seoul 04763, Republic of Korea.
Lithium-tellurium (Li-Te) batteries are gaining attention as a promising next-generation energy storage system due to their superior electrical conductivity and high volumetric capacity compared to sulfur and selenium. Tellurium's unique properties, such as suitable redox potential, excellent conductivity, high volumetric capacity, and greatest stability, position it as a strong candidate for negative electrode materials. This study explores the potential of metal tellurides, specifically CuTe and FeTe monolayers, as effective tellurium host materials, leveraging their polar interactions with lithium polytellurides.
View Article and Find Full Text PDFBMC Chem
January 2025
Nuclear Chemistry Department, Hot Laboratories Center, Egyptian Atomic Energy Authority, P.O. 13759, Cairo, Egypt.
In this work, selenium (IV) ions were adsorbed from aqueous solutions by the strongly basic anion exchange resin Amberlite IRA-400. The morphology of the resin before and after Se(IV) sorption was investigated using different techniques such as energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). To determine the ideal sorption conditions, a batch approach was used to examine the variables affecting Se(IV) sorption performance, including pH, shaking time, adsorbent dosage, initial metal ion concentration, and temperature.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, Lublin, 20-290, Poland.
The main aim of the study was to develop new fruit waste-derived activated carbons of high adsorption performance towards metals, metalloids, and polymers by the use of carbon dioxide (CO)-consuming, microwave-assisted activation. The authors compared morphology, surface chemistry, textural parameters, and elemental composition of precursors (chokeberry seeds, black currant seeds, orange peels), as well as biochars (BCs) and activated carbons (ACs) obtained from them. The adsorption mechanisms of metals (copper, cadmium), metalloids (arsenic, selenium), and macromolecular compounds (bacterial exopolysaccharide, ionic polyacrylamides) on the surface of selected materials were investigated in one- and two-component systems.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059, Krakow city, Poland.
Fly ash, produced during coal combustion for energy making, which is recognized as an industrial by-product, could lead to environmental health hazards. Subsequently, fly ash found that an exceptional adsorption performance for the removal of various toxic pollutants, the adsorption capacity of fly ash might be altered by introducing physical/chemical stimulation. Successfully converting fly ash into zeolites not only recovers their disposal difficulties but also transforms unwanted materials into merchandisable products for various industrial applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!