Paired-pulse depression was studied at the glutamatergic synapse between retinal afferents and thalamocortical cells in the rat dorsal lateral geniculate nucleus. The main objective of this study was to examine the contributions of the pre- and postsynaptic sites to this depression by comparing AMPA- and NMDA-receptor-mediated responses. Equal depression of the two receptor components would indicate involvement of presynaptic mechanisms, while differences in depression would indicate involvement of postsynaptic mechanisms. Pharmacologically isolated AMPA- and NMDA-receptor-mediated currents were recorded using the whole-cell patch-clamp technique in acute thalamic slices. Both the AMPA and the NMDA components showed pronounced depression when retinal afferents were activated by paired pulses. The depression decayed within 5 s. The AMPA component was more strongly depressed than the NMDA component at paired-pulse intervals ranging from 20 to 200 ms, suggesting the involvement of postsynaptic mechanisms. For intervals of 500 ms and longer, the depression of the two components was identical, suggesting the involvement of purely presynaptic mechanisms. The degree of depression measured without the use of pharmacological tools produced similar results, thus excluding the involvement of presynaptic ionotropic glutamate receptors. Cyclothiazide, a blocker of AMPA-receptor desensitisation, reduced the difference in depression between the two components, suggesting that desensitisation of the AMPA receptors is a postsynaptic mechanism that contributes to the difference in depression between the AMPA and the NMDA components.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2290400 | PMC |
http://dx.doi.org/10.1113/jphysiol.2002.019240 | DOI Listing |
Behav Brain Res
January 2025
Laboratorio de Neurobiología, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico. Electronic address:
Ketamine hydrochloride serves multiple purposes, including its use as a general anesthetic, treatment for depression, and recreational drug. In studies involving rodents, ketamine is utilized as a model for schizophrenia. However, it is unclear whether age affects the behavioral response induced by repeated ketamine administration and if it modifies the expression levels of N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and purinergic receptors (P2X1, P2X4, P2X7).
View Article and Find Full Text PDFInt J Neurosci
January 2025
Department of Mathematics, Payame Noor University, Tehran, Iran.
The developing brain undergoes a remarkable process of synapse production and maturation, particularly in glutamatergic synapses. In this study, we focused on the locus coeruleus (LC) nucleus, a brain region crucial for cognitive functions, to investigate the developmental changes in glutamatergic synaptic connections. Using the whole-cell patch clamp method, we recorded evoked excitatory postsynaptic currents (eEPSCs) from LC neurons in rats at ages 7, 14, and 21 days.
View Article and Find Full Text PDFCurr Neuropharmacol
January 2025
Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy.
The central nervous system (CNS) is not an immune-privileged compartment, but it is intimately intertwined with the immune system. Among the components shared by the two compartments is the complement, a main constituent of innate immunity, which is also produced centrally and controls the development and organization of synaptic connections. Complement is considered a doubled-faced system that, besides controlling the physiological development of the central network, also subserves synaptic engulfment pivotal to the progression of neurodegenerative diseases.
View Article and Find Full Text PDFJ Neurosci
January 2025
Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV, USA.
Synaptically released zinc is a neuronal signaling system that arises from the actions of the presynaptic vesicular zinc transporter protein ZnT3. Mechanisms that regulate the actions of zinc at synapses are of great importance for many aspects of synaptic signaling in the brain. Here, we identify the astrocytic zinc transporter protein ZIP12 as a candidate mechanism that contributes to zinc clearance at cortical synapses.
View Article and Find Full Text PDFPharmaceuticals (Basel)
November 2024
Relmada Therapeutics, Inc., Coral Gables, FL 33134, USA.
Uncompetitive NMDAR (N-methyl-D-aspartate receptor) antagonists restore impaired neural plasticity, reverse depressive-like behavior in animal models, and relieve major depressive disorder (MDD) in humans. This review integrates recent findings from in silico, in vitro, in vivo, and human studies of uncompetitive NMDAR antagonists into the extensive body of knowledge on NMDARs and neural plasticity. Uncompetitive NMDAR antagonists are activity-dependent channel blockers that preferentially target hyperactive GluN2D subtypes because these subtypes are most sensitive to activation by low concentrations of extracellular glutamate and are more likely activated by certain pathological agonists and allosteric modulators.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!