Exposure of macrophages to lipopolysaccharide (LPS) induces a hypo-responsive state to a second challenge with LPS that is termed LPS tolerance. LPS tolerance is also induced by pre-exposure to lipopeptides and lipoteichoic acid, which trigger Toll-like receptor (TLR) 2-mediated signaling. LPS signaling involves at least two pathways: a MyD88-dependent cascade that is essential for production of inflammatory cytokines and a MyD88-independent cascade that mediates the expression of IFN-inducible genes. We analyzed the induction of LPS tolerance by several microbial components in mouse peritoneal macrophages. Pre-exposure to LPS led to impaired activation of both the pathways. In contrast, mycoplasmal lipopeptides did not affect the MyD88-independent pathway, but impaired the MyD88-dependent signaling by inhibiting LPS-mediated activation of IL-1 receptor-associated kinase (IRAK) 1. The induction of LPS tolerance by recently identified TLR ligands was analyzed. Pretreatment with double-stranded RNA, which triggers the activation of TLR3, led to defective activation of the MyD88-independent, but not the MyD88-dependent, pathway. Imidazoquinoline compounds, which are recognized by TLR7, had no effect on the MyD88-independent pathway, but inhibited LPS-induced activation of MyD88-dependent signaling through down-regulation of IRAK1 expression. Thus, each microbial component induced LPS tolerance in macrophages.

Download full-text PDF

Source
http://dx.doi.org/10.1093/intimm/dxf046DOI Listing

Publication Analysis

Top Keywords

lps tolerance
20
lps
9
microbial components
8
induction lps
8
myd88-independent pathway
8
myd88-dependent signaling
8
tolerance
6
myd88-dependent
5
activation
5
variety microbial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!