We isolated a mammalian gene whose expression transiently increased in response to intimal denudation of rabbit aorta. It was identical to a gene encoding a zinc transporter, ZNT5, reported very recently by others. Mice deficient for this gene showed poor growth and a decrease in bone density due to impairment of osteoblast maturation to osteocyte. More than 60% of male null mice died suddenly because of the bradyarrhythmias. Analysis of gene-expression profiles in murine hearts by means of an oligonucleotide microarray disclosed that a subset of genes encoding immediate-early response factors (IEGs) and heat shock proteins (HSPs) were down-regulated in Znt5-null mice. These results indicate that Znt5 protein plays an important role in maturation of osteoblasts and in maintenance of the cells involved in the cardiac conduction system, partly owing to dysregulated expression of IEGs and HSPs.

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/11.15.1775DOI Listing

Publication Analysis

Top Keywords

zinc transporter
8
osteopenia male-specific
4
male-specific sudden
4
sudden cardiac
4
cardiac death
4
mice
4
death mice
4
mice lacking
4
lacking zinc
4
gene
4

Similar Publications

Mammalian SLC39A13 promotes ER/Golgi iron transport and iron homeostasis in multiple compartments.

Nat Commun

December 2024

Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.

Iron is a potent biochemical, and accurate homeostatic control is orchestrated by a network of interacting players at multiple levels. Although our understanding of organismal iron homeostasis has advanced, intracellular iron homeostasis is poorly understood, including coordination between organelles and iron export into the ER/Golgi. Here, we show that SLC39A13 (ZIP13), previously identified as a zinc transporter, promotes intracellular iron transport and reduces intracellular iron levels.

View Article and Find Full Text PDF

Plant AT-rich protein and zinc-binding protein (PLATZ) family in Dendrobium huoshanense: identification, evolution and expression analysis.

BMC Plant Biol

December 2024

Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, College of Clinical Medicine of Henan, University of Science and Technology, Luoyang, 471003, China.

PLATZ (plant A/T-rich protein and zinc-binding protein) transcription factors are essential for plant growth, development, and responses to abiotic stress. The regulatory role of PLATZ genes in the environmental adaptation of D. huoshanense is inadequately comprehended.

View Article and Find Full Text PDF

Recent studies have revealed a role for zinc in insulin secretion and glucose homeostasis. Randomized placebo-controlled zinc supplementation trials have demonstrated improved glycemic traits in patients with type II diabetes (T2D). Moreover, rare loss-of-function variants in the zinc efflux transporter reduce T2D risk.

View Article and Find Full Text PDF

ZIP4, a pivotal member of the ZIP family, is the causative gene for the hereditary disorder AE (acrodermatitis enteropathica) in humans, and plays an essential role in regulating zinc ion balance within cells. While research on the molecular structure of ZIP4 continues, there remains a lack of full understanding regarding the stereo-structural conformation of ZIP4 molecules. Currently, there are two hypotheses concerning the transport of zinc ions into the cytoplasm by ZIP4, with some contradictions between experimental studies.

View Article and Find Full Text PDF

Guo, Yan, Chao Yu, Zhongsheng Lu, Menglan Zhang, Qiang Zhang, and Xiao Liu. Zinc homeostasis plays important roles in hypoxia tolerance: A study conducted clinically and . 00:00-00, 2024.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!