High field (W-band, 95 GHz) pulsed electron-nuclear double resonance (ENDOR) measurements were carried out on a number of proteins that contain the mixed-valence, binuclear electron-mediating Cu(A) center. These include nitrous oxide reductase (N(2)OR), the recombinant water-soluble fragment of subunit II of Thermus thermophilus cytochrome c oxidase (COX) ba(3) (M160T9), its M160QT0 mutant, where the weak axial methionine ligand has been replaced by a glutamine, and the engineered "purple" azurin (purpAz). The three-dimensional (3-D) structures of these proteins, apart from the mutant, are known. The EPR spectra of all samples showed the presence of a mononuclear Cu(II) impurity with EPR characteristics of a type II copper. At W-band, the g( perpendicular) features of this center and of Cu(A) are well resolved, thus allowing us to obtain a clean Cu(A) ENDOR spectrum. The latter consists of two types of ENDOR signals. The first includes the signals of the four strongly coupled cysteine beta-protons, with isotropic hyperfine couplings, A(iso), in the 7-15 MHz range. The second group consists of weakly coupled protons with a primarily anisotropic character with A(zz) < 3 MHz. Orientation selective ENDOR spectra were collected for N(2)OR, M160QT0, and purpAz, and simulations of the cysteine beta-protons signals provided their isotropic and anisotropic hyperfine interactions. A linear correlation with a negative slope was found between the maximum A(iso) value of the beta-protons and the copper hyperfine interaction. Comparison of the best-fit anisotropic hyperfine parameters with those calculated from dipolar interactions extracted from the available 3-D structures sets limit to the sulfur spin densities. Similarly, the small coupling spectral region was simulated on the basis of the 3-D structures and compared with the experimental spectra. It was found that the width of the powder patterns of the weakly coupled protons recorded at g(perpendicular) is mainly determined by the histidine H(epsilon)(1) protons. Furthermore, the splitting in the outer wings of these powder patterns indicates differences in the positions of the imidazole rings relative to the Cu(2)S(2) core. Comparison of the spectral features of the weakly coupled protons of M160QT0 with those of the other investigated proteins shows that they are very similar to those of purpAz, where the Cu(A) center is the most symmetric, but the copper spin density and the H(epsilon)(1)-Cu distances are somewhat smaller. All proteins show the presence of a proton with a significantly negative A(iso) value which is assigned to an amide proton of one of the cysteines. The simulations of both strongly and weakly coupled protons, along with the known copper hyperfine couplings, were used to estimate and compare the spin density distribution in the various Cu(A) centers. The largest sulfur spin density was found in M160T9, and the lowest was found in purpAz. In addition, using the relation between the A(iso) values of the four cysteine beta-protons and the H-C-S-S dihedral angles, the relative contribution of the hyperconjugation mechanism to A(iso) was determined. The largest contribution was found for M160T9, and the lowest was found for purpAz. Possible correlations between the spin density distribution, structural features, and electron-transfer functionality are finally suggested.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja012514j | DOI Listing |
Phys Rev Lett
December 2024
Northwestern University, Department of Physics and Astronomy, 2145 Sheridan Road, Evanston, Illinois 60208, USA.
Heavy neutral leptons (HNLs) are often among the hypothetical ingredients behind nonzero neutrino masses. If sufficiently light, they can be produced and detected in fixed-target-like experiments. We show that if the HNLs belong to a richer-but rather generic-dark sector, their production mechanism can deviate dramatically from expectations associated with the standard-model weak interactions.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
University of Maryland, College Park, Joint Quantum Institute, Condensed Matter Theory Center and, Department of Physics, Maryland 20742-4111, USA.
Discrete time crystals are novel phases of matter that break the discrete time translational symmetry of a periodically driven system. In this Letter, we propose a classical system of weakly nonlinear parametrically driven coupled oscillators as a test bed to understand these phases. Such a system of parametric oscillators can be used to model period-doubling instabilities of Josephson junction arrays as well as semiconductor lasers.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany.
Implicit solvation models permit the approximate description of solute-solvent interactions, where water is the most often considered solvent due to its relevance in biological systems. The use of other solvents is less common but is relevant for applications such as in nuclear magnetic resonance (NMR) or chromatography. As an example, chloroform is commonly used in anisotropic NMR to measure residual dipolar couplings (RDCs) of chiral analytes weakly aligned by an alignment medium.
View Article and Find Full Text PDFThermal engineering can be used to exploit absorption in a silicon optical cavity. In this work, the steady state profile of the heat generated by absorption is shaped and used to generate a dynamic heterostructure in a weakly confined silicon optical cavity. This is demonstrated in an edge defect photonic crystal optomechanical cavity to produce phonon lasing and sub-GHz optical pulsing with photon-phonon cooperativity of 0.
View Article and Find Full Text PDFNeuron
January 2025
Neuroscience Institute, Langone Medical Center, New York University, New York, NY, USA; Department of Physiology and Neuroscience, Langone Medical Center, New York University, New York, NY, USA; Department of Neurology, Langone Medical Center, New York University, New York, NY, USA. Electronic address:
Systems consolidation relies on coordination between hippocampal sharp-wave ripples (SWRs) and neocortical UP/DOWN states during sleep. However, whether this coupling exists across the neocortex and the mechanisms enabling it remains unknown. By combining electrophysiology in mouse hippocampus (HPC) and retrosplenial cortex (RSC) with wide-field imaging of the dorsal neocortex, we found spatially and temporally precise bi-directional hippocampo-neocortical interaction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!