We present investigations on noncovalent bonding and supramolecular self-assembly of two related molecular building blocks at a noble metal surface: 4-[trans-2-(pyrid-4-yl-vinyl)]benzoic acid (PVBA) and 4-[(pyrid-4-yl-ethynyl)]benzoic acid (PEBA). These rigid, rodlike molecules comprising the same complementary moieties for hydrogen bond formation are comparable in shape and size. For PVBA, the ethenylene moiety accounts for two-dimensional (2-D) chirality upon confinement to a surface; PEBA is linear and thus 2-D achiral. Molecular films were deposited on a Ag(111) surface by organic molecular beam epitaxy and characterized by scanning tunneling microscopy. At low temperatures (around 150 K), both species form irregular networks of flat lying molecules linked via their endgroups in a diffusion-limited aggregation process. In the absence of kinetic limitations (adsorption or annealing at room temperature), hydrogen-bonded supramolecular assemblies form which are markedly different. With PVBA, enantiomorphic twin chains in two mirror-symmetric species running along a high-symmetry direction of the substrate lattice form by diastereoselective self-assembly of one enantiomer. The chirality signature is strictly correlated between neighboring twin chains. Enantiopure one-dimensional (1-D) supramolecular nanogratings with tunable periodicity evolve at intermediate coverages, reflecting chiral resolution in micrometer domains. In contrast, PEBA assembles in 2-D hydrogen-bonded islands, which are enantiomorphic because of the orientation of the supramolecular arrangements along low-symmetry directions of the substrate. Thus, for PVBA, chiral molecules form 1-D enantiomorphic supramolecular structures because of mesoscopic resolution of a 2-D chiral species, whereas with PEBA, the packing of an achiral species causes 2-D enantiomorphic arrangements. Model simulations of supramolecular ordering provide a deeper understanding of the stability of these systems.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja0256764DOI Listing

Publication Analysis

Top Keywords

supramolecular self-assembly
8
2-d enantiomorphic
8
twin chains
8
supramolecular
7
2-d
6
enantiomorphic
5
pvba
5
peba
5
stereochemical effects
4
effects supramolecular
4

Similar Publications

This study investigates simple acetylenes substituted with phenylurea as a constant H-bonding unit (Alk-R) and varied hydrophobic units (R = H, Phenyl (Ph), Phenylacetylene (PA), Ph-NMe2) to understand self-assembly properties driven by synergistic non-covalent interactions. Our observations reveal hierarchical self-assembled fibrillar networks with luminescent needles, fibers, and flowers on nano- to micro-meter scales. Subtle changes in substituents led to significant differences: H, Ph, PA, and Ph-NMe2 produced needle-like crystals, dendritic nanofibers, microflakes, and no self-assembly, respectively.

View Article and Find Full Text PDF

Fabrication of Hypoxia-Mimicking Supramolecular Hydrogels for Cartilage Repair.

ACS Appl Bio Mater

January 2025

Regenerative Medicine and Stem Cell Laboratory (RMS), Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502 284, Telangana, India.

Despite advancements in chronic arthritis treatment, there remains a significant demand for advanced nanotechnologies capable of efficiently delivering a wide range of therapeutic agents to provide symptomatic relief and facilitate the healing of inflamed cartilage tissue. Considering the significant impact of hypoxia on the development and maintenance of chondral tissue, replicating its effects on stem cells could be a potential approach for the treatment of osteoarthritis (OA). Cobalt is a prominent hypoxia-inducing agent, owing to its ability to activate the hypoxia-inducible factor (HIF) pathway regardless of cellular oxygen levels.

View Article and Find Full Text PDF

Where Does the Proton Go? Structure and Dynamics of Hydrogen-Bond Switching in Aminophosphine Chalcogenides.

Angew Chem Int Ed Engl

January 2025

University of Regensburg, Faculty of Chemistry and Pharmacy, Institute of Inorganic Chemistry, Universitätsstraße 31, D-93053, Regensburg, GERMANY.

Aminophosphates are the focus of research on prebiotic phosphorylation chemistry. Their bifunctional nature also makes them a powerful class of organocatalysts. However, the structural chemistry and dynamics of proton-binding in phosphorylation and organocatalytic mechanisms are still not fully understood.

View Article and Find Full Text PDF

The self-assembly of fibrin is a vital process in blood clotting, primarily facilitated by the interactions between knobs "A" and "B" in the central E region of one molecule and the corresponding holes "a" and "b" in the peripheral D regions of two other fibrin molecules. However, the precise function of the interactions between knob "B" and hole "b" during fibrin polymerization remains a subject of ongoing debate. The present study focuses on investigating intermolecular interactions between knob "B" and hole "b".

View Article and Find Full Text PDF

The final outcomes of supramolecular assembly are determined by the pathways and the formation of intermediates during the assembly process. We studied pathway complexity involving two consecutive pathways in supramolecular polymerization of naphthalene-diimide (NDI) derivative molecule. Depending on preparation methods anisotropic aggregates of J-type nanorods (Agg I) or more flexible H-type nanofibers (Agg II) are obtained from the identical initial state in solution of methyl cyclohexane (MCH) or MCH/CHCl3 mixtures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!