A major hurdle in most current gene therapy modalities is the ability to transduce target tissues at very high efficiencies that ultimately lead to therapeutic levels of transgene expression. We have developed a novel method of recombinant adeno-associated virus 2 (rAAV) delivery that results in increased vector transduction efficiencies using microspheres reversibly conjugated to rAAV vectors. We hypothesize that conjugation to microspheres should result in a higher effective concentration of vector as well as longer relative exposure time of vector to target cells as it moves through the tissue vasculature. In vitro experiments demonstrate that the same level of transduction seen with free vector can be achieved using 1% of vector when conjugated to microspheres. In addition, using magnetic microspheres, the region of infection can be targeted. In vivo, we demonstrate that microsphere-mediated delivery of rAAV vector results in higher transduction efficiencies than delivery with free vector alone when administered either intramuscularly or intravenously. Furthermore, we demonstrate targeting of transgene expression to specific tissues by retention of microsphere-bound vector in the capillary bed. These studies demonstrate a novel method to deliver rAAV vectors more effectively that could prove to be a successful alternative mode of virus-mediated human gene therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1006/mthe.2001.0636DOI Listing

Publication Analysis

Top Keywords

gene therapy
12
method recombinant
8
transgene expression
8
novel method
8
vector
8
transduction efficiencies
8
raav vectors
8
free vector
8
improved method
4
recombinant aav2
4

Similar Publications

Purpose: After failing primary and secondary hormonal therapy, castration-resistant and neuroendocrine prostate cancer metastatic to the bone is invariably lethal, although treatment with docetaxel and carboplatin can modestly improve survival. Therefore, agents targeting biologically relevant pathways in PCa and potentially synergizing with docetaxel and carboplatin in inhibiting bone metastasis growth are urgently needed.

Experimental Design: Phosphorylated (activated) AXL expression in human prostate cancer bone metastases was assessed by immunohistochemical staining.

View Article and Find Full Text PDF
Article Synopsis
  • Primary ciliary dyskinesia (PCD) is a rare genetic disorder linked to chronic respiratory issues, infertility, and problems with body asymmetry, primarily caused by mutations in the CCDC39 and CCDC40 genes.
  • Researchers used advanced techniques to investigate how these genetic variants impact cellular functions beyond just causing cilia to stop moving.
  • They discovered that the absence of CCDC39/CCDC40 creates a significant loss of over 90 ciliary structural proteins, leading to cilia dysfunction and other cellular issues, suggesting that gene therapy could potentially offer a new treatment strategy for PCD.
View Article and Find Full Text PDF

Primary mitochondrial disorders are most often caused by deleterious mutations in the mitochondrial DNA (mtDNA). Here, we used a mitochondrial DddA-derived cytosine base editor (DdCBE) to introduce a compensatory edit in a mouse model that carries the pathological mutation in the mitochondrial transfer RNA (tRNA) alanine (mt-tRNA) gene. Because the original m.

View Article and Find Full Text PDF

PET Reporter Probes for Brain Imaging of Transduced Gene and Cell Expression: Status and Challenges.

J Med Chem

January 2025

Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, 20892 United States.

Article Synopsis
  • Gene therapy and cell transduction are emerging as promising treatments for neurological and psychiatric disorders, with PET imaging playing a key role in assessing treatment effectiveness.
  • The success of PET imaging relies on the creation of specific radiotracers that can identify exogenous transgenes or modified cells in the brain, potentially eliminating the need for invasive procedures.
  • This article discusses the current state and challenges in developing PET probes for monitoring gene therapy and cellular interventions, highlighting the importance of radiochemical development and practical applications in a clinical setting.
View Article and Find Full Text PDF

Background: Antiretroviral treatment increases the risk of accumulation of resistance mutations that negatively impact the possibilities of future treatment. This study aimed to present the frequency of HIV-1 antiretroviral resistance mutations and the genetic diversity among children with virological failure in five pediatric care facilities in Benin.

Methods: A cross-sectional study was carried out from November 20, 2020, to November 30, 2022, in children under 15 years of age who failed ongoing antiretroviral treatment at five facilities care in Benin (VL > 3log10 on two consecutive realizations three months apart).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!