A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Peroxynitrite enhances the ability of Salmonella dublin to invade T84 monolayers. | LitMetric

In the intestine, epithelial cells continually produce and secrete low levels of nitric oxide (NO). Salmonella sp. invade epithelium by responding to environmental stimuli. The aims of this study were to determine the effect of reactive nitrogen intermediates (RNIs) on S. dublin and S. typhimurium growth and invasion of T84 epithelial monolayers. Intracellular NO formation was inhibited by 7-nitroindazole (7-NI) or N(G)-monomethyl-L-arginine, monoacetate (L-NMMA); extracellular NO and peroxynitrite were scavenged with ferro-hemoglobin or urate. The effect of authentic peroxynitrite (ONOO-); 3-morpholino-sydnonimine (SIN-1), which releases ONOO- via NO and superoxide; spermine NONOate, which releases only NO; or superoxide generated by xanthine oxidase and pterin on S. dublin and S. typhimurium growth and invasion were examined. Inhibition of NO synthesis and scavenging of extracellular NO or peroxynitrite reduced S. dublin invasion into T84 monolayers and enhanced bacterial growth. Pre-exposure of S. dublin to ONOO- and SIN-1 increased subsequent bacterial invasion into T84 monolayers. Conversely, exposure of bacteria to spermine NONOate or superoxide did not affect S. dublin invasion. In contrast, S. typhimurium invasion was not affected by pre-treatment with NO donors. In conclusion, exposure of S. dublin to ONOO- enhances the ability of the bacteria to invade epithelial cells. These results suggest that luminal ONOO- may have a novel role as an extracellular signal between invasive bacteria and epithelial cells.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00024382-200207000-00017DOI Listing

Publication Analysis

Top Keywords

t84 monolayers
12
epithelial cells
12
invasion t84
12
enhances ability
8
dublin typhimurium
8
typhimurium growth
8
growth invasion
8
extracellular peroxynitrite
8
spermine nonoate
8
dublin invasion
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!