An evaluation of the outer membrane charge and softness of Thiobacillus ferrooxidans by the Ohshima's electrophoretic model of a "soft" particle.

Folia Microbiol (Praha)

Department of Mineralurgy and Environmental Technologies, Technical University, 04 384 Kosice, Slovakia.

Published: February 2003

The surface charge of bacterial cells plays an important role in their interfacial physiology and adhesion to substrata mediated by the electrostatic double-layer interaction. The surface charge or potential of biological cells is generally calculated from the experimentally measurable electrophoretic velocity of these cells migrating in an external electric field, applying the well-known Smoluchowski equation which is valid for "hard" particles with a sharp interface. However, bacterial cells possessing a structured outer membrane of a finite thickness (dependent on the ionic strength and pH of the surrounding liquid medium) are expected to obey Ohshima's electrophoretic mobility equation derived recently for "soft" particles. The electrophoretic mobility of Thiobacillus ferrooxidans was measured here by the fully automated technique of electrophoretic light scattering, based on the proportionality between the mobility and the Doppler shift in the frequency of light scattered by electrophoresing cells. Agreement was obtained between the experimentally determined electrophoretic mobility expressed as a function of low ionic strength (60-6000 mumol/L) at different pH values and the best-fit theoretical predictions of the "soft" particle electrophoresis theory, which is better than in the case of applying the Smoluchowski formula. The best-fit surface-charge and softness parameters predict a rather rigid and low-charge outer membrane of the bacterium examined, as compared to the parameters obtained for other bacteria in media of high ionic strength.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF02817641DOI Listing

Publication Analysis

Top Keywords

outer membrane
12
ionic strength
12
electrophoretic mobility
12
thiobacillus ferrooxidans
8
ohshima's electrophoretic
8
"soft" particle
8
surface charge
8
bacterial cells
8
electrophoretic
6
cells
5

Similar Publications

Second harmonic generation (SHG) measurements using SHG-active dye molecules have recently attracted attention as a method to detect the formation of pores in phospholipid bilayers. The bilayers, in which the dye molecules are embedded in the outer leaflet, exhibit a noncentrosymmetric structure, generating SHG signals. However, when pores form, these dye molecules translocate through the pores into the inner leaflet, leading to a more centrosymmetric structure and the subsequent loss of the SHG signals.

View Article and Find Full Text PDF

Lithium enhanced plasmid-mediated conjugative transfer of antimicrobial resistance genes in Escherichia coli: Different concentrations and mechanisms.

Aquat Toxicol

January 2025

Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China. Electronic address:

Conjugative transfer, a pivotal mechanism in the transmission of antimicrobial resistance genes, is susceptible to various environmental pollutants. As an emerging contaminant, lithium (Li) has garnered much attention due to its extensive applications. This research investigated the effects of Li on conjugative transfer process, examining biochemical and omics perspectives.

View Article and Find Full Text PDF

The World Health Organization has identified multidrug-resistant bacteria as a serious global health threat. Gram-negative bacteria are particularly prone to antibiotic resistance, and their high rate of antibiotic resistance has been suggested to be related to the complex structure of their cell membrane. The outer membrane of Gram-negative bacteria contains lipopolysaccharides that protect the bacteria against threats such as antibiotics, while the inner membrane houses 20-30% of the bacterial cellular proteins.

View Article and Find Full Text PDF

Prcis: The discriminant function of glaucoma, obtained by the Laguna ONhE colorimetric program, significantly correlates with the BMO-MRW. Furthermore, the diagnostic capacity was inferior to other structural tests in POAG patients.

Purpose: To evaluate the diagnostic capability for glaucoma and the correlation between peripapillary and macular parameters using spectral domain optical coherence tomography (SD-OCT) and optic nerve head hemoglobin (OHN Hb) levels assessed by the Laguna ONhE® software using colorimetric analysis.

View Article and Find Full Text PDF

Optimizing Nanobubble Production in Ceramic Membranes: Effects of Pore Size, Surface Hydrophobicity, and Flow Conditions on Bubble Characteristics and Oxygenation.

Langmuir

January 2025

John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 Martin Luther King Blvd., Newark, New Jersey 07102, United States.

Precise control of nanobubble size is essential for optimizing the efficiency and performance of nanobubble applications across diverse fields, such as agriculture, water treatment, and medicine. Producing fine bubbles, including nanobubbles, is commonly achieved by purging gas through porous media, such as ceramic or polymer membranes. Many operational factors and membrane properties can significantly influence nanobubble production and characteristics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!