Clonality of oligoastrocytomas.

Hum Pathol

Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, China.

Published: May 2002

Oligoastrocytomas (OA) are mixed glial tumors that show morphologic features of both oligodendrogliomas and astrocytomas. The histogenesis of these tumors remains undefined. The aim of this study was to investigate the clonality of OA on the basis of tumor-dependent genetic alterations and tumor-independent X-chromosome inactivation. We microdissected 11 biphasic OA and subjected the oligodendroglial and astrocytic components to allelic loss analysis of chromosomes 1p, 9p21, 10q, 13q, 17p, and 19q; TP53 immunohistochemical and mutation analyses; and X-linked HUMARA gene methylation study. On the basis of the genetic findings, we categorized these tumors into 3 groups. Group 1 consisted of 4 tumors that showed identical genetic aberrations in the 2 histologic elements, characterized by allelic loss on 1p and 19q. These results suggest that group 1 tumors are of monoclonal origin and share a precursor cell with oligodendrogliomas. Group 2 consisted of 5 tumors characterized by losses on 1p and 19q, with additional allelic losses on chromosomes 9p, 10q, 13q and/or 17p. Four of these tumors were of the anaplastic type. Thus, group 2 tumors may be regarded as advanced variants of group 1 OA with heterogeneous genetic changes during clonal expansion. The X-chromosome inactivation analysis confirmed the monoclonality of groups 1 and 2 OA. Group 3 consisted of two tumors that showed divergent allelic loss patterns in the 2 histologic components. Mutation and overexpression of TP53 were detectable in the astrocytic components only. These findings raise the possibility that group 3 tumors have a biclonal origin. In conclusion, our results suggest that OA are predominantly of monoclonal origin but that a small subset of tumors may be derived from different precursors.

Download full-text PDF

Source
http://dx.doi.org/10.1053/hupa.2002.124784DOI Listing

Publication Analysis

Top Keywords

allelic loss
12
group consisted
12
consisted tumors
12
group tumors
12
tumors
11
x-chromosome inactivation
8
astrocytic components
8
10q 13q
8
groups group
8
monoclonal origin
8

Similar Publications

A rare haplotype of the GJD3 gene segregating in familial Meniere's disease interferes with connexin assembly.

Genome Med

January 2025

Otology & Neurotology Group CTS495, Instituto de Investigación Biosanitario, Ibs.GRANADA, Universidad de Granada, 18071, Granada, Spain.

Background: Familial Meniere's disease (FMD) is a rare polygenic disorder of the inner ear. Mutations in the connexin gene family, which encodes gap junction proteins, can also cause hearing loss, but their role in FMD is largely unknown.

Methods: We retrieved exome sequencing data from 94 individuals in 70 Meniere's disease (MD) families.

View Article and Find Full Text PDF

Osteosarcoma is the most common primary cancer of the bone, with a peak incidence in children and young adults. Using multi-region whole-genome sequencing, we find that chromothripsis is an ongoing mutational process, occurring subclonally in 74% of osteosarcomas. Chromothripsis generates highly unstable derivative chromosomes, the ongoing evolution of which drives the acquisition of oncogenic mutations, clonal diversification, and intra-tumor heterogeneity across diverse sarcomas and carcinomas.

View Article and Find Full Text PDF

Background And Objectives: A previous postmortem study of men with Christianson syndrome, a disorder caused by loss-of-function mutations in the gene , reported a mechanistic link between pathologic tau accumulation and progressive symptoms such as cerebellar atrophy and cognitive decline. This study aimed to characterize the relationships between neuropathologic manifestations and tau accumulation in heterozygous women with mutation.

Methods: We conducted a multimodal neuroimaging and plasma biomarker study on 3 middle-aged heterozygous women with mutations (proband 1: mid-50s; proband 2: early 50s; proband 3: mid-40s) presenting with progressive extrapyramidal symptoms.

View Article and Find Full Text PDF

Seed production on native seed farms has increased to meet the rising demand for plant material for restoration. Although these propagation efforts are necessary for restoration, cultivating wild populations may also result in unintentional selection and elicit evolutionary changes that mimic crop domestication, essentially turning these efforts into artificial domestication experiments. Here, we investigated whether phenotypic and genomic changes associated with domestication occurred in the wildflower Clarkia pulchella Pursh (Onagraceae) by comparing the wild source populations to the farmed population after eight generations of cultivation.

View Article and Find Full Text PDF

Emergence of fungal hybrids - Potential threat to humans.

Microb Pathog

January 2025

Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India. Electronic address:

Fungal hybrids arise through the interbreeding of distinct species. This hybridization process fosters increased genetic diversity and the emergence of new traits. Mechanisms driving hybridization include the loss of heterozygosity, copy number variations, and horizontal gene transfer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!