Background: We explored the feasibility of measuring regional tracer activity concentrations and flow defects in myocardium of rats with a high spatial resolution small-animal PET system (microPET).

Methods And Results: Myocardial images were obtained after intravenous (18)F-fluorodeoxyglucose (18FDG) in 11 normal rats (group 1) and assembled into polar maps. Regional 18F activity concentrations were measured in 9 regions of interest and compared with tissue activity concentrations measured by well counting. In another 9 rats (group 2), myocardial perfusion images were acquired with 13N-ammonia at baseline and during coronary occlusion. On the polar maps recorded during coronary occlusion, the size of perfusion defects was measured as the myocardium with <50% of maximum activity and expressed as percent total myocardium and was correlated with the area at risk defined by postmortem staining. The diagnostic quality of 18FDG and 13N-ammonia microPET images was good to excellent; the images were easily assembled into polar maps. In group 1, regional (18)F concentrations by microPET and postmortem were correlated linearly (r=0.99; P<0.01 for average and r=0.97; P<0.01 for regional concentrations). In group 2, perfusion defect sizes by microPET and postmortem were correlated linearly (P<0.01; r=0.93).

Conclusions: The findings indicate the feasibility of noninvasive studies of the myocardium in rats with a dedicated small-animal PET-imaging device.

Download full-text PDF

Source
http://dx.doi.org/10.1161/01.cir.0000020221.28996.78DOI Listing

Publication Analysis

Top Keywords

activity concentrations
16
rats group
8
polar maps
8
concentrations measured
8
coronary occlusion
8
noninvasive measurement
4
measurement myocardial
4
activity
4
myocardial activity
4
concentrations
4

Similar Publications

Recently, 3-D porous architecture of the composites play a key role in cell proliferation, bone regeneration, and anticancer activities. The osteoinductive and osteoconductive properties of β-TCP allow for the complete repair of numerous bone defects. Herein, β-TCP was synthesized by wet chemical precipitation route, and their 3-D porous composites with HBO and Cu nanoparticles were prepared by the solid-state reaction method with improved mechanical and biological performances.

View Article and Find Full Text PDF

This study explores the effectiveness of various antifungal drugs in treating sporotrichosis caused by Sporothrix schenckii, especially in non-wild-type (non-WT) strains. The drugs tested include enilconazole (ENIL), isavuconazole (ISA), posaconazole (POS), terbinafine (TER), and itraconazole (ITC). The study involved in vitro and in vivo tests on 10 WT isolates and eight ITC non-WT isolates.

View Article and Find Full Text PDF

Exogenous dsRNA triggers sequence-specific RNAi and fungal stress responses to control Magnaporthe oryzae in Brachypodium distachyon.

Commun Biol

January 2025

Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392, Giessen, Germany.

In vertebrates and plants, dsRNA plays crucial roles as PAMP and as a mediator of RNAi. How higher fungi respond to dsRNA is not known. We demonstrate that Magnaporthe oryzae (Mo), a globally significant crop pathogen, internalizes dsRNA across a broad size range of 21 to about 3000 bp.

View Article and Find Full Text PDF

A label-free, flexible, and disposable aptasensor was designed for the rapid on-site detection of vancomycin (VAN) levels. The electrochemical sensor was based on lab-printed carbon electrodes (C-PE) enriched with cauliflower-shaped gold nanostructures (AuNSs), on which VAN-specific aptamers were immobilized as biorecognition elements and short-chain thiols as blocking agents. The AuNSs, characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM), enhanced the electrochemical properties of the platform and the aptamer immobilization active sites.

View Article and Find Full Text PDF

Acoustical properties are essential for understanding the molecular interactions in fluids, as they influence the physicochemical behavior of liquids and determine their suitability for diverse applications. This study investigated the acoustical parameters of silver nanoparticles (Ag NPs), reduced graphene oxide (rGO), and Ag/rGO nanocomposite nanofluids at varying concentrations. Ag NPs and Ag/rGO nanocomposites were synthesized via a Bos taurus indicus (BTI) metabolic waste-assisted method and characterized using advanced techniques, including XRD, TEM, Raman, DLS, zeta potential, and XPS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!