Specificity of memapsin 1 and its implications on the design of memapsin 2 (beta-secretase) inhibitor selectivity.

Biochemistry

Protein Studies Program, Oklahoma Medical Research Foundation and Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA.

Published: July 2002

Memapsin 1 is closely homologous to memapsin 2 (BACE), or beta-secretase, whose action on beta-amyloid precursor protein (APP) leads to the production of beta-amyloid (A beta) peptide and the progression of Alzheimer's disease. Memapsin 2 is a current target for the development of inhibitor drugs to treat Alzheimer's disease. Although memapsin 1 hydrolyzes the beta-secretase site of APP, it is not significantly present in the brain, and no direct evidence links it to Alzheimer's disease. We report here the residue specificity of eight memapsin 1 subsites. In substrate positions P(4), P(3), P(2), P(1), P(1)', P(2)', P(3)', and P(4)', the most preferred residues are Glu, Leu, Asn, Phe, Met, Ile, Phe, and Trp, respectively, while the second preferred residues are Gln, Ile, Asp, Leu, Leu, Val, Trp, and Phe, respectively. Other less preferred residues can also be accommodated in these subsites of memapsin 1. Despite the broad specificity, these residue preferences are strikingly similar to those of human memapsin 2 [Turner et al. (2001) Biochemistry 40, 10001-10006] and thus pose a serious problem to the design of differentially selective inhibitors capable of inhibiting memapsin 2. This difficulty was confirmed by the finding that several potent memapsin 2 inhibitors effectively inhibited memapsin 1 as well. Several possible approaches to overcome this problem are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi025926tDOI Listing

Publication Analysis

Top Keywords

alzheimer's disease
12
preferred residues
12
memapsin
11
specificity memapsin
8
disease memapsin
8
memapsin implications
4
implications design
4
design memapsin
4
memapsin beta-secretase
4
beta-secretase inhibitor
4

Similar Publications

Background: Palliative sedation involves the intentional proportional lowering of the level of consciousness in patients with life-limiting disease who are experiencing refractory suffering. The efficacy of palliative sedation needs to be monitored to ensure patient comfort. The aim of this study was to evaluate the efficacy using discomfort levels combined with sedation/agitation levels.

View Article and Find Full Text PDF

Demyelination-derived lysophosphatidylserine promotes microglial dysfunction and neuropathology in a mouse model of Alzheimer's disease.

Cell Mol Immunol

January 2025

Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.

Microglia dysfunction-associated neuroinflammation is an important driver of Alzheimer's disease (AD), but the mechanism is poorly understood. Here, we show that demyelination promotes neuroinflammation and cognitive impairment via the lysophosphatidylserine (LysoPS)-GPR34 axis in AD. Demyelination is observed at the early stage and is accompanied by an increase in LysoPS in myelin debris in a 5xFAD mouse model of AD.

View Article and Find Full Text PDF

Anti-Aβ immunotherapy use to treat Alzheimer's disease is on the rise. While anti-Aβ antibodies provide hope in targeting Aβ plaques in the brain there still remains a lack of understanding regarding the cellular responses to these antibodies in the brain. In this study we sought to identify acute effects of anti-Aβ antibody on immune responses.

View Article and Find Full Text PDF

Background/aim: Alzheimer's disease is a complex, incurable to date, multifactorial disease, which suggests the need for continued development of pharmacotherapy.

Materials And Methods: A comprehensive literature search was conducted to identify known ligands with anticholinesterase activity, resulting in the discovery of over 100 alkaloids that are also available in the PubChem database. Subsequently, the ligands underwent molecular docking to evaluate their affinity for the target enzyme.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!