AI Article Synopsis

  • Asthma is a complex disease marked by symptoms like airway hyperreactivity and mucus overproduction, driven mainly by Th2 lymphocytes and their cytokines, especially IL-13.
  • IL-13 plays a crucial role in asthma, as shown by research where blocking it significantly reduced asthma-related symptoms in animal models.
  • Findings indicate that IL-13 directly affects epithelial cells to cause airway hyperreactivity and mucus production, highlighting the importance of understanding how this cytokine functions in asthma.

Article Abstract

Asthma is an increasingly common disease that remains poorly understood and difficult to manage. This disease is characterized by airway hyperreactivity (AHR, defined by exaggerated airflow obstruction in response to bronchoconstrictors), mucus overproduction and chronic eosinophilic inflammation. AHR and mucus overproduction are consistently linked to asthma symptoms and morbidity. Asthma is mediated by Th2 lymphocytes, which produce a limited repertoire of cytokines, including interleukin-4 (IL-4), IL-5, IL-9 and IL-13. Although each of these cytokines has been implicated in asthma, IL-13 is now thought to be especially critical. In animal models of allergic asthma, blockade of IL-13 markedly inhibits allergen-induced AHR, mucus production and eosinophilia. Furthermore, IL-13 delivery to the airway causes all of these effects. IL-13 is thus both necessary and sufficient for experimental models of asthma. However, the IL-13-responsive cells causing these effects have not been identified. Here we show that mice lacking signal transducer and activator of transcription 6 (STAT6) were protected from all pulmonary effects of IL-13. Reconstitution of STAT6 only in epithelial cells was sufficient for IL-13-induced AHR and mucus production in the absence of inflammation, fibrosis or other lung pathology. These results demonstrate the importance of direct effects of IL-13 on epithelial cells in causing two central features of asthma.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nm734DOI Listing

Publication Analysis

Top Keywords

epithelial cells
12
mucus overproduction
12
ahr mucus
12
effects il-13
12
direct effects
8
airway hyperreactivity
8
asthma
8
mucus production
8
cells causing
8
il-13
7

Similar Publications

Atopic dermatitis (AD) is a chronic inflammatory skin disease, characterized by an impaired epidermal barrier and immunological alterations. The activity of the cytoprotective NRF2 transcription factor is reduced in the epidermis of AD patients. To determine the functional relevance of this deficiency, we used mice lacking fibroblast growth factor receptors 1 and 2 in keratinocytes (K5-R1/R2 mice), which exhibit several AD-like symptoms.

View Article and Find Full Text PDF

PIM1 instigates endothelial-to-mesenchymal transition to aggravate atherosclerosis.

Theranostics

January 2025

Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Shandong, China.

Endothelial-to-mesenchymal transition (EndMT) is a cellular reprogramming mechanism by which endothelial cells acquire a mesenchymal phenotype. Endothelial cell dysfunction is the initiating factor of atherosclerosis (AS). Increasing evidence suggests that EndMT contributes to the occurrence and progression of atherosclerotic lesions and plaque instability.

View Article and Find Full Text PDF

Postinterventional restenosis is a major challenge in the treatment of peripheral vascular disease. Current anti-restenosis drugs inhibit neointima hyperplasia but simultaneously impair endothelial repair due to indiscrminative cytotoxity. Stem cell-derived exosomes provide multifaceted therapeutic effects by delivering functional miRNAs to endothelial cells, macrophages, and vascular smooth muscle cells (VSMCs).

View Article and Find Full Text PDF

Tumor microenvironment in oral squamous cell carcinoma.

Front Immunol

January 2025

Department of Oral Anatomy and Physiology, Jilin Provincial Key Laboratory of Oral Biomedical Engineering, Hospital of Stomatology, Jilin University, Changchun, China.

Oral squamous cell carcinoma (OSCC) is a highly aggressive and malignant tumor of oral cavity with a poor prognosis and high mortality due to the limitations of existing therapies. The significant role of tumor microenvironment (TME) in the initiation, development, and progression of OSCC has been widely recognized. Various cells in TME, including tumor-associated macrophages (TAMs), cancer-associated fibroblasts (CAFs), T lymphocytes, tumor-associated neutrophils (TANs), myeloid-derived suppressor cells (MDSCs) and dendritic cells (DCs), form a complicated and important cellular network to modulate OSCC proliferation, invasion, migration, and angiogenesis by secreting RNAs, proteins, cytokines, and metabolites.

View Article and Find Full Text PDF

Raddeanin A (RA) Inhibited EMT and Stemness in Glioblastoma via downregulating Skp2.

J Cancer

January 2025

Cancer Prevention and Treatment Institute of Chengdu, Department of Neurosurgery, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu 611137, China.

Glioblastoma (GBM), notorious for its poor prognosis, stands as a formidable challenge within the central nervous system tumor category, primarily due to its intricate pathology that encompasses stemness and the epithelial-mesenchymal transition (EMT). The ubiquity of S phase kinase-associated protein 2 (Skp2) overexpression in GBM, a protein implicated in both EMT and stemness traits, correlates with increased drug resistance, elevated tumor grades, and adverse outcomes. This investigation delves into the impact of Raddeanin A (RA), a triterpenoid compound extracted from Anemone raddeana Regel, on GBM, with a special focus on its influence over Skp2 expression levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!