We investigated the reason for the absence of the long-wavelength PSI Chl a fluorescence at -196 degrees C in the cyanobacterium Gloeobacter violaceus using two methods: p-nitrothiophenol (p-NTP) treatment and time-resolved fluorescence spectra. The p-NTP treatment showed that PSII Chl a fluorescence was specifically affected in a manner similar to that for Synechocystis sp. PCC 6803 and spinach chloroplasts, although there were no components modified by the p-NTP treatment, indicating an absence of the long-wavelength PSI Chl a fluorescence. The time-resolved fluorescence spectra with a time resolution of 1.3 ps and spectral resolution of 1.0 nm gave no indication of the presence of the long-wavelength PSI fluorescence in the wavelength region between 700 nm and 760 nm, indicating that a very fast energy transfer among Chl a molecules could not account for the absence of the long-wavelength PSI fluorescence. From these data, it seems that the absence of the long-wavelength PSI fluorescence is due to a lack of the formation of a component responsible for the fluorescence at -196 degrees C, which may originate from a difference in the amino acid sequence. We discuss the significance of this phenomenon and interpret our findings in terms of the evolution of cyanobacteria.

Download full-text PDF

Source
http://dx.doi.org/10.1093/pcp/pcf070DOI Listing

Publication Analysis

Top Keywords

long-wavelength psi
24
absence long-wavelength
20
chl fluorescence
16
psi chl
12
fluorescence -196
12
-196 degrees
12
p-ntp treatment
12
psi fluorescence
12
fluorescence
10
cyanobacterium gloeobacter
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!