Purpose: To decide whether the identical topography of short- and middle-wavelength cone photoreceptors in two species of rodents reflects the presence of both opsins in all cone cells.
Methods: Double-label immunocytochemistry using antibodies directed against short-wavelength (S)-and middle- to long-wavelength (M/L)-sensitive opsin were used to determine the presence of visual pigments in cones of two species of rodents, the Siberian hamster (Phodopus sungorus) and the pouched mouse (Saccostomus campestris) from South Africa. Topographical distribution was determined from retinal whole-mounts, and the colocalization of visual pigments was examined using confocal laser scanning microscopy. Opsin colocalization was also confirmed in consecutive semithin tangential sections.
Results: The immunocytochemical results demonstrate that in both the Siberian hamster and the pouched mouse all retinal cones contain two visual pigments. No dorsoventral gradient in the differential expression of the two opsins is observed.
Conclusions: The retina of the Siberian hamster and the pouched mouse is the first example to show a uniform coexpression of M and S cone opsins in all cones, without any topographical gradient in opsin expression. This finding makes these two species good models for the study of molecular control mechanisms in opsin coexpression in rodents, and renders them suitable as sources of dual cones for future investigations on the role and neural connections of this cone type.
Download full-text PDF |
Source |
---|
Horm Behav
January 2025
Department of Psychology, University at Buffalo, SUNY, Buffalo, NY, USA; Neuroscience Program, University at Buffalo, SUNY, Buffalo, NY, USA; Evolution, Ecology, and Behavior Program, University at Buffalo, SUNY, NY, USA.
Anxiety is among the most prevalent mental health issues in children. While it is well established that gonadal steroids influence anxiety-like behavior in adulthood, a potential role in prepubertal juveniles has been overlooked because it is commonly thought that the gonads are quiescent during the juvenile period. However, the juvenile gonads secrete measurable amounts of steroids, and we have recently found that prepubertal ovariectomy decreases anxiety-like behavior of juvenile Siberian hamsters in the light/dark box test.
View Article and Find Full Text PDFChemosphere
February 2025
Centre National de La Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 8 Allée Du Général Rouvillois, 67000, Strasbourg, France. Electronic address:
In nature, species synchronize reproduction and energy metabolism with seasons to optimize survival and growth. This study investigates the effect of oral exposure to bisphenol A (BPA) on phenotypic and neuroendocrine seasonal adaptations in the Djungarian hamster, which in contrast to conventional laboratory rodents, is a well-recognized seasonal model. Adult female and male hamsters were orally exposed to BPA (5, 50, or 500 μg/kg/d) or vehicle during a 10-week transition from a long (LP) to short (SP) photoperiod (winter transition) or vice versa (summer transition).
View Article and Find Full Text PDFPLoS One
December 2024
Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russia.
Genetics
November 2024
Department of Biological Sciences, University of Denver, Denver, CO 80208, USA.
Hybrid incompatibilities are a critical component of species barriers and may arise due to negative interactions between divergent regulatory elements in parental species. We used a comparative approach to identify common themes in the regulatory phenotypes associated with hybrid male sterility in two divergent rodent crosses, dwarf hamsters and house mice. We investigated three potential characteristic gene expression phenotypes in hybrids including the propensity of transgressive differentially expressed genes towards over or underexpression, the influence of developmental stage on patterns of misexpression, and the role of the sex chromosomes on misexpression phenotypes.
View Article and Find Full Text PDFPLoS One
October 2024
Institute of Neurobiology, Ulm University, Ulm, Germany.
Although the Djungarian hamster (Phodopus sungorus) is a seasonality model, it presents substantial variability in winter acclimation. In response to short photoperiod, some individuals express a suite of winter traits such as low body mass, regressed gonads, white fur, and daily torpor, while others develop only some adjustments or maintain a summer phenotype. Despite comprehensive research, the mechanisms underlying polymorphism of winter phenotype are still unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!