A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Structural basis for the NAD-dependent deacetylase mechanism of Sir2. | LitMetric

Structural basis for the NAD-dependent deacetylase mechanism of Sir2.

J Biol Chem

National Creative Research Initiative Center for Structural Biology and Department of Life Science, Pohang University of Science and Technology, Hyo-ja dong, San31, Pohang, KyungBook 790-784, South Korea.

Published: September 2002

The NAD-dependent histone/protein deacetylase activity of Sir2 (silent information regulator 2) accounts for its diverse biological roles including gene silencing, DNA damage repair, cell cycle regulation, and life span extension. We provide crystallographic evidence that 2'-O-acetyl ADP-ribose is the reaction product that is formed at the active site of Sir2 from the 2.6-A co-crystal structure of 2'-O-acetyl-ADP-ribose and Sir2 from Archaeoglobus fulgidus. In addition, we show that His-116 and Phe-159 play critical roles in the catalysis and substrate recognition. The conserved Ser-24 and Asp-101 contribute to the stability for NAD binding rather than being directly involved in the catalysis. The crystal structures of wild type and mutant derivatives of Sir2, in conjunction with biochemical analyses of the mutants, provide novel insights into the reaction mechanism of Sir2-mediated deacetylation.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M205460200DOI Listing

Publication Analysis

Top Keywords

sir2
5
structural basis
4
basis nad-dependent
4
nad-dependent deacetylase
4
deacetylase mechanism
4
mechanism sir2
4
sir2 nad-dependent
4
nad-dependent histone/protein
4
histone/protein deacetylase
4
deacetylase activity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!