Partitioning of nitrate assimilation among leaves, stems and roots of poplar.

Tree Physiol

Fruit Laboratory, Agriculture Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA.

Published: July 2002

Plants differ in tissue localization of nitrate reduction and assimilation. Some species reduce nitrate primarily in the leaves, whereas other species localize nitrate reduction and assimilation in the roots. We determined how nitrate assimilation is partitioned among leaves, stems and roots of poplar (Populus tremula L. x P. alba L.) by comparing tissue differences in in vivo nitrate reductase activity (NRA), nitrate reductase abundance and tissue nitrate concentration. Compared with stems or roots, NRA was greater in leaves, and the highest leaf NRA was found in young leaves. Leaf and root NRA increased with increasing nitrate supply, whereas stem NRA remained constant. Leaf NRA was at least 10-fold greater than root NRA at all external nitrate concentrations. Nitrate reductase abundance increased in all tissues with increasing nitrate availability, and nitrate reductase abundance was at least 10-fold greater in leaves than in stems or roots at all nitrate availabilities. Tissue nitrate concentration increased with increasing nitrate supply and was greater in roots than in stems and leaves. Photoperiod influenced NRA, with leaf NRA declining in nitrate-fertilized plants with short daily photoperiods (8-h). We conclude that different tissues of poplar vary in nitrate assimilation with little nitrate assimilation occurring in roots and the most nitrate assimilation taking place in leaves.

Download full-text PDF

Source
http://dx.doi.org/10.1093/treephys/22.10.717DOI Listing

Publication Analysis

Top Keywords

nitrate assimilation
20
nitrate
18
stems roots
16
nitrate reductase
16
leaves stems
12
reductase abundance
12
leaf nra
12
increasing nitrate
12
nra
9
leaves
8

Similar Publications

Nitrogen Assimilation Plays a Role in Balancing the Chloroplastic Glutathione Redox Potential Under High Light Conditions.

Plant Cell Environ

January 2025

The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.

Nitrate reduction requires reducing equivalents produced by the photosynthetic electron transport chain. Therefore, it has been suggested that nitrate assimilation provides a sink for electrons under high light conditions. We tested this hypothesis by monitoring photosynthetic efficiency and the chloroplastic glutathione redox potential (chl-E) of plant lines with mutated glutamine synthetase 2 (GS2) and ferredoxin-dependent glutamate synthase 1 (GOGAT1).

View Article and Find Full Text PDF

Water-saving irrigation and the mixed application of controlled-release nitrogen fertilizer (CRNF) and common urea (CU; with a higher nitrogen release rate) have shown promise in improving rice yield with high resource use efficiency. However, the physiological mechanism underlying this effect remains largely unknown. This study involved a field experiment on rice in Jingzhou City, Central China, in 2020 and 2021.

View Article and Find Full Text PDF

Quinoa () is an Andean allotetraploid pseudocereal crop with higher protein content and balanced amino acid composition in the seeds. Ammonium (NH), a direct source of organic nitrogen assimilation, mainly transported by specific transmembrane ammonium transporters (), plays important roles in the development, yield, and quality of crops. Many and their functions have been identified in major crops; however, no systematic analyses of and their regulatory networks, which is important to increase the yield and protein accumulation in the seeds of quinoa, have been performed to date.

View Article and Find Full Text PDF

A novel bacterial strain, DGFC5, was isolated from a municipal sewage disposal system. It efficiently removed ammonium, nitrate, and nitrite under conditions of 5% salinity, without intermediate accumulation. Provided with a mixed nitrogen source, DGFC5 showed a higher utilization priority for NH-N.

View Article and Find Full Text PDF

Genome-Wide Identification and Expression Analysis of Gene Family Under Various Nitrogen Conditions in Avocado ( Mill.).

Genes (Basel)

December 2024

Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Trees, Guangzhou 510640, China.

Avocado is an important economic fruit tree that requires a lot of nitrogen (N) to support growth and development. Nitrate transporter (NRT) gene family plays an essential role in N uptake and use in plants. However, no systematic identification of the NRT gene family has been reported in avocado.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!