Background: In response to various stressful situations, including diauxic conditions, the Msn2 and Msn4 transcription factors induce STRE-mediated gene expression of many stress responsive genes in Saccharomyces cerevisiae. This is called the general stress response. The whi2 cells in the stationary phase are smaller than wild-type cells.
Results: Here we demonstrate that STRE-mediated gene expression in whi2 cells is reduced to half of that in the wild-type cells under various stress conditions. It is also delayed for several hours when the mutant cells enter the stationary phase. Using the two-hybrid system, we isolated a WHI2-interacting gene, PSR1, which is one of the redundant genes encoding plasma membrane phosphatases. whi2 and psr1 psr2 mutants had similar phenotypes, including reduced STRE-mediated gene expression, higher sensitivity to sodium ions and heat shock, and hyper-phosphorylation of Msn2. The phosphatase activity of Psr1 was necessary for the full activation of STRE-mediated gene expression. Furthermore, both Psr1 and Msn2 were co-immunoprecipitated with Whi2.
Conclusions: Thus, Whi2 and its binding partner, Psr1-phosphatase, are required for a full activation of the general stress response, possibly through the dephosphorylation of Msn2. These results may explain why stationary phase whi2 cells are small.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1365-2443.2002.00538.x | DOI Listing |
Biotechnol Lett
March 2022
Department of Food Science and Technology, Jungwon University, 85, Munmu-ro, Goesan-eup, Goesan-gun, Chungbuk, 367-805, Republic of Korea.
Objective: This study aimed to identify genes related to freeze-thaw tolerance and elucidate the tolerance mechanism in yeast Saccharomyces cerevisiae as an appropriate eukaryote model.
Results: In this study, one tolerant strain exposed to freeze-thaw stress was isolated by screening a transposon-mediated mutant library and the disrupted gene was identified to be YCP4. In addition, this phenotype related to freeze-thaw tolerance was confirmed by deletion and overexpressing of this corresponding gene.
Genes Cells
June 2002
Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Japan.
Background: In response to various stressful situations, including diauxic conditions, the Msn2 and Msn4 transcription factors induce STRE-mediated gene expression of many stress responsive genes in Saccharomyces cerevisiae. This is called the general stress response. The whi2 cells in the stationary phase are smaller than wild-type cells.
View Article and Find Full Text PDFMicrobiology (Reading)
February 2000
Department of Biochemistry and Molecular Biology, IMBW, BioCentrum Amsterdam, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands1.
Changing the growth mode of Saccharomyces cerevisiae by adding fermentable amounts of glucose to cells growing on a non-fermentable carbon source leads to rapid repression of general stress-responsive genes like HSP12. Remarkably, glucose repression of HSP12 appeared to occur even at very low glucose concentrations, down to 0.005%.
View Article and Find Full Text PDFMol Gen Genet
January 2000
Department of Biological Sciences, Graduate School of Science, University of Tokyo, Japan.
The TOM1 gene codes for a so-called HECT protein, a putative ubiquitin ligase, in Saccharomyces cerevisiae. Deletion of the entire gene (tom1-10) or the sequence encoding the HECT domain (tom1-2) causes temperature sensitivity for growth. Here we report the isolation of extragenic, recessive suppressors of tom1-2, which were designated tmr (for tom1 revertant) mutations.
View Article and Find Full Text PDFMol Microbiol
January 1997
School of Biochemistry and Molecular Genetics, University of New South Wales, Sydney, Australia.
SOD2, encoding manganese superoxide dismutase (MnSOD), is essential for stationary-phase survival of yeast cells. In addition, stationary-phase cells are more resistant to oxidative stress than exponential-phase cells. The use of a SOD2::lacZ fusion construct in this study shows that transcription of SOD2 increases 6.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!