In the present work, virgin olive oil, sunflower oil and a vegetable shortening were used as cooking oils for the deep-frying and pan-frying of potatoes, for eight successive sessions, under the usual domestic practice. Several chemical and physicochemical parameters (acidic value, peroxide value, total polar artefacts, total phenol content and triglyceride fatty acyl moiety composition) were assayed during frying operations in order to evaluate the status of the frying oils, which were found within expected ranges similar to those previously reported. The oil fatty acids were effectively protected from oxidation by the natural antioxidants. The frying oil absorption by the potatoes was quantitated within 6.1-12.8%, depending on the oil type and the frying process. The retention of alpha- and (beta + gamma)-tocopherols during the eight fryings ranged from 85-90% (first frying) to 15-40% (eighth frying), except for the (beta + gamma)-tocopherols of sunflower oil, which almost disappeared after the sixth frying. The deterioration during the successive frying of several phenolic species present in virgin olive oil is reported for the first time. The retention of total phenolics ranged from 70-80% (first frying) to 20-30% (eighth frying). Tannic acid, oleuropein and hydroxytyrosol-elenolic acid dialdeydic form showed remarkable resistance in all frying sessions in both frying methods, while hydroxytyrosol and hydroxytyrosol-elenolic acid were the faster eliminated. The deterioration of the other phenolic species account for 40-50% and 20-30% for deep-frying and pan-frying, respectively, after three to four frying sessions, which are the most usual in the household kitchen. Deep-frying resulted in better recoveries of all the parameters examined. The correlation of the deterioration rate of the phenolic compounds and tocopherols during frying is discussed and the nutritional aspects of the natural antioxidant intake, through the oil absorbed by the potatoes, are evaluated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09637480220138098 | DOI Listing |
Foods
December 2024
College of Food Science and Engineering, Guiyang University, Guiyang 550005, China.
The effects of frying times (1, 2, 3, and 4 min) and temperatures (140, 160, 180, and 200 °C) were investigated on the nutritional components, color, texture, and volatile compounds of three varieties (808, 0912, and LM) from Guizhou, China. Increased frying time and temperature significantly reduced the moisture, polysaccharide, and protein contents, while increasing hardness and chewiness, and decreasing elasticity and extrusion resilience, negatively impacting overall quality. Optimal umami and sweet amino acid retention were achieved by frying at 160 °C frying for 1-3 min or 140-180 °C for 2 min.
View Article and Find Full Text PDFFood Chem
December 2024
Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, PR China; Weifang Institute of food science and processing technology, Weifang 261000, PR China. Electronic address:
The practice of deep-frying introduces various health concerns. Assessing the quality of frying oil is paramount. This study employs three-dimensional fluorescence spectroscopy to evaluate the peroxide value of vegetable oils after varying frying times.
View Article and Find Full Text PDFFood Res Int
January 2025
School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China. Electronic address:
Chrysanthemi Flos has been consumed as floral tea for centuries, but the effects of stir-frying on its chemical profile, sensory characteristics, and bioactivity remain unclear. This study used untargeted metabolomics, sensory assessment (E-eye, E-nose, E-tongue), and antioxidant activity evaluation to investigate compositional changes and their effects. In the metabolomics analysis, a total of 101 non-volatile and 306 volatile differential metabolites were identified.
View Article and Find Full Text PDFFood Res Int
January 2025
Department of Food Science and Technology, Damghan Branch, Islamic Azad University, Damghan, Iran.
Frying is one of the oldest cooking methods, widely used to prepare crispy and flavorful foods. However, a significant concern with fried foods is the high amount of oil absorption. The application of edible coatings is a common approach to reducing oil absorption in fried potatoes.
View Article and Find Full Text PDFFoods
December 2024
Department of Food Technology, Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain.
This review provides an overview of the main vegetable oils of different botanical origin and composition that can be used for frying worldwide (olive and extra-virgin olive oil, high-oleic sunflower oil, rapeseed oil, peanut oil, rice bran oil, sunflower oil, corn oil, soybean oil, cottonseed oil, palm oil, palm kernel oil and coconut oil) and their degradation during this process. It is well known that during this culinary technique, oil's major and minor components degrade throughout different reactions, mainly thermoxidation, polymerization and, to a lesser extent, hydrolysis. If severe high temperatures are employed, isomerization to fatty acyl chains and cyclization are also possible.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!