A folate-receptor-targeted 99mTc-radiopharmaceutical, [99mTc]Tc(CO)(3)DTPA-folate, was prepared by heating [99mTc]Tc(CO)(3)(H(2)O)(3)(+) in an aqueous solution of the previously reported DTPA-folate conjugate. The radiotracer was HPLC purified (> 98% radiochemical purity) and evaluated in vitro and in vivo as an agent for targeting folate-receptor-positive cells. [99mTc]Tc(CO)(3)DTPA-folate experienced high, folate-receptor-specific uptake in human KB tumor cells. Intravenous administration of [99mTc]Tc(CO)(3)DTPA-folate to athymic mice bearing KB cell tumor xenografts resulted in 99mTc tumor uptake of 1.8 +/- 0.5 and 3.3 +/- 0.2%ID/g (n = 3) at 30 minutes and 4 hours post-injection, respectively. Tumor uptake was reduced when folic acid was co-administered with the intravenous [99mTc]Tc(CO)(3)DTPA-folate, consistent with radiopharmaceutical localization being mediated by the folate receptor.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0969-8051(02)00310-4DOI Listing

Publication Analysis

Top Keywords

tumor uptake
8
synthesis evaluation
4
evaluation 99mtcco3-dtpa-folate
4
99mtcco3-dtpa-folate folate-receptor-targeted
4
folate-receptor-targeted radiopharmaceutical
4
radiopharmaceutical folate-receptor-targeted
4
folate-receptor-targeted 99mtc-radiopharmaceutical
4
[99mtc]tcco3dtpa-folate
4
99mtc-radiopharmaceutical [99mtc]tcco3dtpa-folate
4
[99mtc]tcco3dtpa-folate prepared
4

Similar Publications

Purpose: Breast cancer ranks as the most prevalent cancer in women, characterized by heightened fatty acid synthesis and glycolytic activity. Fatty acid synthase (FASN) is prominently expressed in breast cancer cells, regulating fatty acid synthesis, thereby enhancing tumor growth and migration, and leading to radioresistance. This study aims to investigate how FASN inhibition affects cell proliferation, migration, and radioresistance in breast cancer, as well as the mechanisms involved.

View Article and Find Full Text PDF

Background & Aims: This systematic literature review of qualitative findings aims to identify the perceived barriers and enablers for hepatocellular carcinoma (HCC) surveillance from patient and clinician perspectives.

Methods: A systematic search of databases using key term combinations with the following inclusion criteria: 1) qualitative and quantitative (survey) studies exploring barriers and enablers of HCC surveillance, and 2) qualitative and quantitative (survey) studies exploring barriers and enablers of enagagement in clinical care for patients with cirrhosis and/or viral hepatitis.

Results: The search returned 445 citations: 371 did not meet the study criteria and were excluded.

View Article and Find Full Text PDF

Background: In clinical practice, several radiopharmaceuticals are used for PSMA-PET imaging, each with distinct biodistribution patterns. This may impact treatment decisions and outcomes, as eligibility for PSMA-directed radioligand therapy is usually assessed by comparing tumoral uptake to normal liver uptake as a reference. In this study, we aimed to compare tracer uptake intraindividually in various reference regions including liver, parotid gland and spleen as well as the respective tumor-to-background ratios (TBR) of different F-labeled PSMA ligands to today's standard radiopharmaceutical Ga-PSMA-11 in a series of patients with biochemical recurrence of prostate cancer who underwent a dual PSMA-PET examination as part of an individualized diagnostic approach.

View Article and Find Full Text PDF

Preclinical evaluation of the potential PARP-imaging probe [carbonyl-C]DPQ.

EJNMMI Radiopharm Chem

January 2025

Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.

Background: Poly (ADP-ribose) polymerase (PARP) enzymes are crucial for the repair of DNA single-strand breaks and have become key therapeutic targets in homologous recombination-deficient cancers, including prostate cancer. To enable non-invasive monitoring of PARP-1 expression, several PARP-1-targeting positron emission tomography (PET) tracers have been developed. Here, we aimed to preclinically investigate [carbonyl-C]DPQ as an alternative PARP-1 PET tracer as it features a strongly distinct chemotype compared to the frontrunners [F]FluorThanatrace and [F]PARPi.

View Article and Find Full Text PDF

Applications of Au Nanoclusters in Photon-Based Cancer Therapies.

Nanomaterials (Basel)

December 2024

Department of Chemistry, College of Arts and Sciences, Case Western Reserve University, Cleveland, OH 44106, USA.

Atomically precise gold nanoclusters (AuNCs) exhibit unique physical and optical properties, making them highly promising for targeted cancer therapy. Their small size enhances cellular uptake, facilitates rapid distribution to tumor tissues, and minimizes accumulation in non-target organs compared to larger gold nanoparticles. AuNCs, particularly Au, show significant potential in phototherapy, including photothermal (PTT), photodynamic (PDT), and radiation therapies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!