This paper presents a digital signal processor (DSP)-based new multichannel electrocardiogram (ECG) system for 12-lead synchronization ECG automatic analysis in real-time with high sampling rate at 1000 Hz and 12-bits precision. Using the hardware structure of double-CPU based on Microprocessor (MPU) 89C55 and DSP TMS320F206 combines the powerful control ability of MPU with DSPs fast computation ability. Fully utilizing the double-CPUs resource, the system can distribute the reasonable CPU-time for the real-time tasks of multichannel synchronization ECG sampling, digital filter, data storing, waveform automatic analysis and print at high sampling rate. The digital ECG system has the advantages of simple structure, sampling with high speed and precision, powerful real-time processing ability and good quality. The paper discusses the system's principle and the skilful hardware design, also gives the ECG processing using the fast simple integer-coefficient filter method and the automatic calculation algorithms of the ECG parameters such as heart rate, P-R interval, Q-T interval and deflexion angle of ECG-axis etc. The system had been successfully tested and used in the ECG automatic analysis instrument.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0169-2607(01)00177-8 | DOI Listing |
J Magn Reson Imaging
January 2025
Department of Radiology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine (Shenzhen Traditional Chinese Medicine Hospital), Shenzhen, China.
Background: Multifrequency MR elastography (mMRE) enables noninvasive quantification of renal stiffness in patients with chronic kidney disease (CKD). Manual segmentation of the kidneys on mMRE is time-consuming and prone to increased interobserver variability.
Purpose: To evaluate the performance of mMRE combined with automatic segmentation in assessing CKD severity.
J Dent Sci
January 2025
School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan.
Background/purpose: Identifying crestal bone level (CBL) on the buccal and lingual aspects poses challenges in conventional dental radiographs. Given that optical coherence tomography (OCT) has the capability to non-invasively provide in-depth information about the periodontium, this in vitro study aimed to assess whether OCT can effectively identify periodontal landmarks and measure CBL in the presence of gingiva.
Materials And Methods: An in-house handheld scanning probe connected to a 1310-nm swept-source OCT (SS-OCT) system, along with self-developed algorithms were employed to measure the CBL in dental models with artificial gingiva.
J Dent Sci
January 2025
First Clinical Division, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, China.
Background/purpose: Artificial intelligence (AI) can assist in medical diagnosis owing to its high accuracy and efficiency. This study aimed to develop a diagnostic system for automatically determining the degree of tooth wear (TW) using intraoral photographs with deep learning.
Materials And Methods: The study included 388 intraoral photographs.
J Dent Sci
January 2025
Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan.
Background/purpose: In this study, we utilized magnetic resonance imaging data of the temporomandibular joint, collected from the Division of Oral and Maxillofacial Surgery at Taipei Veterans General Hospital. Our research focuses on the classification and severity analysis of temporomandibular joint disease using convolutional neural networks.
Materials And Methods: In gray-scale image series, the most critical features often lie within the articular disc cartilage, situated at the junction of the temporal bone and the condyles.
Arthroplast Today
February 2025
Department of Radiology, Montefiore Medical Center, Bronx, NY.
Background: Periprosthetic hip dislocation after total hip arthroplasty is a devastating postoperative complication. It is often associated with suboptimal orientation of the acetabular component, characterized by the acetabular abduction and anteversion angles obtained from anteroposterior pelvic radiographs. We introduce a novel automated web tool to streamline the subjective and lengthy process of this manual measurement and compare it to manual human measurements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!