We've established a nonhuman primate islet allotransplant model to address questions such as whether transplanting islets into the gut's arterial system would more safely and as effectively support long-term islet allograft survival compared with the traditional portal vein approach. We reasoned that islets make up <2% of pancreatic cell mass but consume an estimated 20% of arterial blood flow, suggesting an advantage for the arterial site. Access to the arterial system is also easier and safer than the portal system. Pancreatectomized rhesus macaques were transplanted with allogeneic islets infused into either the portal vein (n = 6) or the celiac artery (n = 4). To prevent rejection, primates were given daclizumab, tacrolimus, and rapamycin. In five of six portal vein experiments, animals achieved normoglycemia without exogenous insulin. In contrast, none of the animals given intra-arterial islets showed even transient insulin independence (P = 0.048). Two of the latter animals received a second islet transplant, this time to the portal system, and both achieved insulin independence. Thus, intraportal islet transplantation under conventional immunosuppression is feasible in primates and can result in long-term insulin independence when adequate immunosuppression is maintained. Arterial islet injection, however, does not appear to be a viable islet transplantation technique.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2337/diabetes.51.7.2135 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Primate Behavioral Ecology, Institute of Biology, Leipzig University, Leipzig 04103, Germany.
Biological relatedness is a key consideration in studies of behavior, population structure, and trait evolution. Except for parent-offspring dyads, pedigrees capture relatedness imperfectly. The number and length of identical-by-descent DNA segments (IBD) yield the most precise relatedness estimates.
View Article and Find Full Text PDFAnimal Model Exp Med
January 2025
Institute of Medical Biology Chinese Academy of Medical Sciences Peking Union Medical College Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease Medical Primate Research Center, Chinese Academy of Medical Sciences, Kunming, China.
Background: Non-human primates (NPHs), such as rhesus macaques, cynomolgus monkeys, and Assamese macaques, play a crucial role in biomedical research. However, baseline cytokine and electrolyte data for these three species, particularly data stratified by age and sex, are limited. Therefore, the aim of this study was to establish and analyze age- and sex-specific cytokine and electrolyte profiles in these three species.
View Article and Find Full Text PDFBehav Brain Sci
January 2025
Centre for Logic and Philosophy of Science, Ghent University, Ghent,
Stibbard-Hawkes challenges the link between symbolic material evidence and behavioural modernity. Extending this to non-human species, we find that personal adornment, decoration, figurative art, and musical instruments may not uniquely distinguish human cognition. These common criteria may ineffectively distinguish symbolic from non-symbolic cognition or symbolic cognition is not uniquely human.
View Article and Find Full Text PDFEvol Anthropol
March 2025
Department of Anthropology, University of California San Diego, La Jolla, California, USA.
Primates rely on memory to navigate both physical and social environments and in humans, loss of memory function leads to devastating consequences. Alzheimer's disease (AD) is a neurodegenerative disease which begins by impacting memory functioning and is ultimately fatal. AD is common across human populations and its prevalence is predicted to rise with increases in the aging population.
View Article and Find Full Text PDFNPJ Vaccines
January 2025
Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical college, Kunming, China.
The emergence of SARS-CoV-2 variants with defined mutations that enhance pathogenicity or facilitate immune evasion has resulted in a continual decline in the protective efficacy of existing vaccines. Therefore, there is a pressing need for a vaccine capable of combating future variants. In this study, we designed new mRNA vaccines, BSCoV05 and BSCoV06, and generated point mutations in the receptor-binding domain (RBD) of the original Wuhan strain to increase their broad-spectrum antiviral activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!