We show that fluorescently tagged ligands with high affinity for their targets can be reversibly unbound by focused laser excitation. By sequential unbinding and relabeling with different colors of alpha-bungarotoxin, we selectively labeled adjacent pools of acetylcholine receptors (AChRs) at neuromuscular junctions of adult mice. Timelapse imaging in vivo revealed that synaptic AChRs completely intermingle over approximately 4 days and many extrasynaptic AChRs are incorporated into the synapse each day. In mice that lacked alpha-dystrobrevin, a component of the dystrophin-glycoprotein complex, rates of AChR turnover, and intermingling were increased approximately 4- to 5-fold. These results demonstrate remarkable molecular dynamism underlying macroscopic stability of the postsynaptic membrane, and establish alpha-dystrobrevin as a key control point for regulation of mobility and turnover.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0896-6273(02)00739-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!