Background: Vascular endothelial growth factor (VEGF) mRNA levels increase in rat skeletal muscle after a single bout of acute exercise. We assessed regional differences in VEGF165 mRNA levels in rat gastrocnemius muscle using in situ hybridization after inducing upregulation of VEGF by treadmill running (1 hr) or electrical stimulation (1 hr). Muscle functional regions were defined as oxidative (primarily oxidative fibers, I and IIa), or glycolytic (entirely IIb or IId/x fibers). Functional regions were visualized on muscle cross sections that were matched in series to slides processed through in situ hybridization with a VEGF165 probe. A greater upregulation in oxidative regions was hypothesized.
Results: Total muscle VEGF mRNA (via Northern blot) was upregulated 3.5-fold with both exercise and with electrical stimulation (P = 0.015). Quantitative densitometry of the VEGF mRNA signal via in situ hybridization reveals significant regional differences (P
Conclusions: Moderately higher VEGF mRNA signal in oxidative muscle regions is consistent with regional differences in capillary density. However, it is not possible to determine if the VEGF mRNA signal difference is important in either the maintenance of regional capillarity differences or exercise induced angiogenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC117122 | PMC |
http://dx.doi.org/10.1186/1472-6793-2-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!