One of the most frequently used packages for electronic structure research, GAUSSIAN 98, is compiled on Linux systems with various hardware configurations, including AMD Athlon (with the "Thunderbird" core), AthlonMP, and AthlonXP (with the "Palomino" core) systems as well as the Intel Pentium 4 (with the "Willamette" core) machines. The default PGI FORTRAN compiler (pgf77) and the Intel FORTRAN compiler (ifc) are respectively employed with different architectural optimization options to compile GAUSSIAN 98 and test the performance improvement. In addition to the BLAS library included in revision A.11 of this package, the Automatically Tuned Linear Algebra Software (ATLAS) library is linked against the binary executables to improve the performance. Various Hartree-Fock, density-functional theories, and the MP2 calculations are done for benchmarking purposes. It is found that the combination of ifc with ATLAS library gives the best performance for GAUSSIAN 98 on all of these PC-Linux computers, including AMD and Intel CPUs. Even on AMD systems, the Intel FORTRAN compiler invariably produces binaries with better performance than pgf77. The enhancement provided by the ATLAS library is more significant for post-Hartree-Fock calculations. The performance on one single CPU is potentially as good as that on an Alpha 21264A workstation or an SGI supercomputer. The floating-point marks by SpecFP2000 have similar trends to the results of GAUSSIAN 98 package.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ci010345gDOI Listing

Publication Analysis

Top Keywords

fortran compiler
12
atlas library
12
electronic structure
8
including amd
8
intel fortran
8
performance
5
advances pc-linux
4
systems
4
pc-linux systems
4
systems electronic
4

Similar Publications

Article Synopsis
  • The Open Quantum Platform is an open-source library designed to improve sustainability and interoperability in computational chemistry, featuring various quantum chemical theories for energy and gradient calculations.
  • It introduces innovative methods like mixed-reference spin-flip time-dependent density functional theory (MRSF-TDDFT) and custom functionals, enhancing the usability of traditional theories like DFT and TDDFT.
  • Optimized for high performance and parallel execution, the platform also includes a Python wrapper for tasks like geometry optimization and is poised for future upgrades, making it essential for advancing quantum chemical research.
View Article and Find Full Text PDF

Enabling Fortran Standard Parallelism in GAMESS for Accelerated Quantum Chemistry Calculations.

J Chem Theory Comput

July 2023

Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, United States.

The performance of Fortran 2008 DO CONCURRENT (DC) relative to OpenACC and OpenMP target offloading (OTO) with different compilers is studied for the GAMESS quantum chemistry application. Specifically, DC and OTO are used to offload the Fock build, which is a computational bottleneck in most quantum chemistry codes, to GPUs. The DC Fock build performance is studied on NVIDIA A100 and V100 accelerators and compared with the OTO versions compiled by the NVIDIA HPC, IBM XL, and Cray Fortran compilers.

View Article and Find Full Text PDF

"HIFU beam" is a freely available software tool that comprises a MATLAB toolbox combined with a user-friendly interface and binary executable compiled from FORTRAN source code (HIFU beam. (2021). Available: http://limu.

View Article and Find Full Text PDF

The previously reported exact potential and multipole moment (EP/MM) method for fast and accurate evaluation of the intermolecular electrostatic interaction energies using the pseudoatom representation of the electron density [Volkov, Koritsanszky & Coppens (2004). Chem. Phys.

View Article and Find Full Text PDF

In view of the strong constraint zones of the concrete structure on the pile foundation, there are some differences between the calculation results of the isotropic equivalent pile foundation by the volume replacement ratio method and the actual engineering. In this paper, referring to the relevant algorithm of rock mass with anchor, the anchor and rock mass are, respectively, compared to pile and surrounding soil foundation. Eshelby equivalent inclusion theory is introduced into the equivalent mechanical model of soil foundation with pile, and a new equivalent pile foundation algorithm considering anisotropic elastic constant is compiled by Fortran.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!