When yeast cells are inoculated into grape must for vinification they find stress conditions because of osmolarity, which is due to very high sugar concentration, and pH lower than 4. In this work an analysis of the expression of three osmotic stress induced genes (GPD1, HSP12 and HSP104) under microvinification conditions is shown as a way to probe those stress situations and the regulatory mechanisms that control them. The results indicate that during the first hours of microvinification there is an increase in the GPDI mRNA levels with a maximum about one hour after inoculation, and a decrease in the amount of HSP12 and HSP104 mRNAs, although with differences between them. The RNA steady-state levels of all the genes considered, and in some cases the microvinification progress are significantly affected by the composition of the must (pH, nature of the osmotic agent and carbon source). These results point out the importance of the control of these parameters and the yeast molecular response during the first hours of vinification for an accurate winemaking process.

Download full-text PDF

Source
http://dx.doi.org/10.1078/0723-2020-00087DOI Listing

Publication Analysis

Top Keywords

hours microvinification
8
hsp12 hsp104
8
study hours
4
microvinification
4
microvinification osmotic
4
osmotic stress-response
4
stress-response genes
4
genes probes
4
probes yeast
4
yeast cells
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!