Acute hypoxia produces an increase in ventilation. When the hypoxia is sustained, the initial increase in ventilation is followed a decrease in ventilation. The precise mechanism of this decline in ventilation during sustained hypoxia is unknown. Recent studies hypothesized that the accumulation of dopamine in the central nervous system might have a major role in production of hypoxic respiratory depression. The purpose of this study was to examine whether dopamine has an effect on occurance of central ventilatory depression which is seen in acute hypoxia in peripheral chemoreceptors denervated animals. The experiment were conducted in rabbits anesthetized with Na-pentobarbital (25 mg x kg(-1) i.v.). For intracerebroventricular (i.c.v.) injections of dopamine (1 microg) in each animal, canula was placed in left lateral cerebral ventricle by stereotaxic method. Respiratory frequency (f x min(-1)), tidal volume (V(T)) ventilation minute volume (V(E)) and systemic arterial blood pressure (BP) were recorded during air and 3 minutes hypoxic gas mixture (8%O2-92%N2) breathing. I.c.v. administration of dopamine during normoxia decreased V(T), f, V(E) and BP, significantly. When rabbits were injected with an i.c.v. dopamine on hypoxic gas mixture breathing in control animals, there was depression of hypoxic ventilatory responses. After i.c.v. administration of dopamine antagonists haloperidol (0.1 mg) and domperidone (0.07 mg) in chemodenervated rabbits, the significant increases in V(T), V(E) and BP were observed. On the breathing of hypoxic gas mixture of chemodenervated and i.c.v. dopamine antagonists administrated rabbits, hypoxic depression was completely abolished. These results of this study show that accumulation of dopamine in the brain seems to reduce the response of the central control mechanisms to chemoreceptor impulses during normoxia and hypoxia. In conclusion present study suggests important role played by central dopaminergic pathways in the occurence of acute hypoxic ventilatory depression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1620/tjem.196.219 | DOI Listing |
Sci Rep
January 2025
Department of Pediatrics, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe Mikicho, Kidagun, 761-0793, Kagawa, Japan.
Acute kidney injury (AKI) has been reported to occur in 30-70% of asphyxiated neonates. Hydrogen (H) gas became a major research focus in neonatal medicine after the identification of its robust antioxidative properties. However, the ability of H gas to ameliorate AKI is unknown.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
January 2025
Developmental Integrative Biology, Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203, United States of America.
Bird nests of coastal or inland breeding birds can temporarily flood during high tides or storms. However, respiratory physiological disruption of such water submersion and implications for post-submergence survival are poorly understood. We hypothesized that respiratory physiological disturbances caused by submersion would be rapidly corrected following return to normal gas exchange across the eggshell, thus explaining survival of nest inundation in the field.
View Article and Find Full Text PDFJ Control Release
January 2025
Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea; DR.Cure Inc., Hwasun 58128, Republic of Korea. Electronic address:
Cancer photoimmunotherapy represents an intelligent and highly efficient therapeutic approach that harnesses the photothermal effect to precisely target and ablate tumor tissues, while simultaneously modulating the immune system to achieve tumor elimination. The integration of multifunctional therapeutic modalities for combined photoimmunotherapy requires advanced drug delivery systems. However, the design of a single nanoagent capable of serving as a multifunctional nanophotosensitizer remains a significant challenge.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Tianjin Key Laboratory of Biomedical Materials and Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China.
The development of efficient therapeutic strategies to promote ferroptotic cell death offers significant potential for hepatocellular carcinoma (HCC) treatment. Herein, this study presents an HCC-targeted nanoplatform that integrates bimetallic FeMoO nanoparticles with CO-releasing molecules, and further camouflaged with SP94 peptide-modified macrophage membrane for enhanced ferroptosis-driven multi-modal therapy of HCC. Leveraging the multi-enzyme activities of the multivalent metallic elements, the nanoplatform not only decomposes HO to generate oxygen and alleviate tumor hypoxia but also depletes glutathione to inactivate glutathione peroxides 4, which amplify sonodynamic therapy and ferroptotic tumor death under ultrasound (US) irradiation.
View Article and Find Full Text PDFEnviron Sci Process Impacts
January 2025
Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
Conventional practices for inorganic nitrogen fertilizer are highly inefficient leading to excess nitrogen in the environment. Excess environmental nitrogen induces ecological (, hypoxia, eutrophication) and public health (, nitrate contaminated drinking water) consequences, motivating adoption of management strategies to improve fertilizer use efficiency. Yet, how to limit the environmental impacts from inorganic nitrogen fertilizer while maintaining crop yields is a persistent challenge.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!