This report describes the cloning and expression of both subunits of PKA in the opportunistic fungal pathogen Aspergillus fumigatus. The predicted translation product of the regulatory subunit, pkaR, is defined as a type II regulatory subunit. The gene encoding the A. fumigatus catalytic subunit, pkaC, contains the conserved kinase and activation domains that are characteristic of PkaC proteins. Both subunit mRNAs are expressed throughout the asexual life cycle of A. fumigatus. Message levels of pkaR and pkaC are higher during co-cultivation with alveolar epithelial cells than during culture alone.

Download full-text PDF

Source
http://dx.doi.org/10.1023/a:1015533406565DOI Listing

Publication Analysis

Top Keywords

cloning expression
8
aspergillus fumigatus
8
regulatory subunit
8
pkac
4
expression pkac
4
pkac pkar
4
pkar genes
4
genes encoding
4
encoding camp-dependent
4
camp-dependent protein
4

Similar Publications

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

UK Dementia Research Institute at Cardiff University, Cardiff, South Glamorgan, United Kingdom.

Background: Genome-wide association studies (GWAS) in Alzheimer's disease (AD) implicate complement in pathogenesis. Complement receptor 1 (CR1; CD35) is a top AD-associated GWAS hit; the long variant, CR1*2, associates with risk. The roles of CR1 in brain and how variants influence AD risk are poorly understood.

View Article and Find Full Text PDF

Background: Beta-2 microglobulin (β2m) is a component of the major histocompatibility complex class I (MHC-I) playing a crucial role in the immune system on cell surface, but it can be separated from the MHC-I and exist in biological fluid independently. Numerous reports have shown that β2m is a systemic pro-aging factor impairing cognitive function, and that it is increased in the blood and CSF of patients with Alzheimer's disease (AD). While β2m in the body fluid has been recognized as a potential factor in AD and aging, the development of therapeutic agents, especially those directly targeting β2m using antibodies, may face challenges.

View Article and Find Full Text PDF

Background: Synaptic degeneration is a primary neuropathological factor associated with cognitive decline in Alzheimer's disease (AD). In 2021, we generated a synaptic Polygenic Risk Score (PRS) that comprised only 8 variants within 6 synaptic genes (APOE, PICALM, BIN1, PTK2B, DLG2 and MINK1) that predicted AD with 72% accuracy in two neuropathological cohorts. This supports the hypothesis that genetic variants that regulate an individual's vulnerability to AD-related synapse degeneration could be used to identify individuals at-risk for AD prior to the appearance of clinical symptoms.

View Article and Find Full Text PDF

Background: Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that is characterized by upper and lower motor neuron death that leads to paralysis with the average survival being 3-5 years after diagnosis. The major pathological protein in ALS is TDP-43. TDP-43 becomes hyperphosphorylated and forms inclusions mainly in the cytoplasm.

View Article and Find Full Text PDF

[Preparation and identification of monoclonal antibodies against human LAG3 by immunizing mice with recombinant eukaryotic cell antigens].

Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi

December 2024

Department of Medical Experimental Center, Northern Jiangsu People's Hospital, Yangzhou 225001, China. *Corresponding author, E-mail: yyue_king

Objective To prepare mouse anti-human lymphocyte activation gene 3 (LAG3) monoclonal antibody (mAb) and perform immunological identification of the antibody. Methods BALB/c mice were immunized with LAG3-mLumin-3T3 cells, which stably express the extracellular and transmembrane regions of human LAG3 in mouse 3T3 cells. The secretion of anti-human LAG3 antibodies in mouse serum was assessed using flow cytometry and immunofluorescence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!