Treatment with isolated allogeneic mesenchymal cells has the potential to enhance the therapeutic effects of conventional bone marrow transplantation in patients with genetic disorders affecting mesenchymal tissues, including bone, cartilage, and muscle. To demonstrate the feasibility of mesenchymal cell therapy and to gain insight into the transplant biology of these cells, we used gene-marked, donor marrow-derived mesenchymal cells to treat six children who had undergone standard bone marrow transplantation for severe osteogenesis imperfecta. Each child received two infusions of the allogeneic cells. Five of six patients showed engraftment in one or more sites, including bone, skin, and marrow stroma, and had an acceleration of growth velocity during the first 6 mo postinfusion. This improvement ranged from 60% to 94% (median, 70%) of the predicted median values for age- and sex-matched unaffected children, compared with 0% to 40% (median, 20%) over the 6 mo immediately preceding the infusions. There was no clinically significant toxicity except for an urticarial rash in one patient just after the second infusion. Failure to detect engraftment of cells expressing the neomycin phosphotransferase marker gene suggested the potential for immune attack against therapeutic cells expressing a foreign protein. Thus, allogeneic mesenchymal cells offer feasible posttransplantation therapy for osteogenesis imperfecta and likely other disorders originating in mesenchymal precursors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC124401PMC
http://dx.doi.org/10.1073/pnas.132252399DOI Listing

Publication Analysis

Top Keywords

mesenchymal cells
16
osteogenesis imperfecta
12
isolated allogeneic
8
marrow-derived mesenchymal
8
cells
8
cell therapy
8
allogeneic mesenchymal
8
bone marrow
8
marrow transplantation
8
including bone
8

Similar Publications

This study aimed to investigate the genetic association between glioblastoma (GBM) and unsupervised deep learning-derived imaging phenotypes (UDIPs). We employed a combination of genome-wide association study (GWAS) data, single-nucleus RNA sequencing (snRNA-seq), and scPagwas (pathway-based polygenic regression framework) methods to explore the genetic links between UDIPs and GBM. Two-sample Mendelian randomization analyses were conducted to identify causal relationships between UDIPs and GBM.

View Article and Find Full Text PDF

A recent publication by Bornes and colleagues explored the impact of the estrous cycle on mammary tumor response to neoadjuvant chemotherapy (NAC). Using genetically engineered mouse models, Bornes and colleagues revealed that chemotherapy is less effective when initiated during the diestrus stage compared to during the estrus stage. A number of changes during diestrous were identified that may reduce chemosensitivity of mammary tumors: an increased mesenchymal state of breast cancer cells during diestrous, decreased blood vessel diameters, and higher numbers of macrophages in the tumor microenvironment.

View Article and Find Full Text PDF

Isolation of Human BAMBIhighMFGE8high Umbilical Cord-Derived Mesenchymal Stromal Cells.

J Vis Exp

January 2025

Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University;

Umbilical cord-derived mesenchymal stromal/stem cells (UC-MSCs) present low immunogenicity and potent immunomodulatory effects for treating various diseases. Human UC-MSCs are a heterogeneous population consisting of three main subpopulations with different cell shapes, proliferation rates, differentiation abilities, and immune regulatory functions. Previously, BAMBIMFGE8 UC-MSCs, the first subgroup successfully isolated from UC-MSCs were found to fail to alleviate lupus nephritis.

View Article and Find Full Text PDF

SHP2 promotes the epithelial-mesenchymal transition in triple negative breast cancer cells by regulating β-catenin.

J Cancer Res Clin Oncol

January 2025

Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.

Purpose: Growing evidence suggests that the tyrosine phosphatase SHP2 is pivotal for tumor progression. Triple-negative breast cancer (TNBC) is the most lethal subtype of breast cancer, characterized by its high recurrence rate, aggressive metastasis, and resistance to chemotherapy. Understanding the mechanisms of tumorigenesis and the underlying molecular pathways in TNBC could aid in identifying new therapeutic targets.

View Article and Find Full Text PDF

Nonunion is a significant complication in fracture management for surgeons. Salvianolic acid A (SAA), derived from the traditional Chinese plant Salviae miltiorrhizae Bunge (Danshen), exhibits notable anti-inflammatory and antioxidant properties. Although studies have demonstrated its ability to promote osteogenic differentiation, the exact mechanism of action remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!