The nucleocapsid protein (NC) of HIV type 1 (HIV-1) is a nucleic acid chaperone that facilitates the rearrangement of nucleic acid secondary structure during reverse transcription. HIV-1 NC contains two CCHC-type zinc binding domains. Here, we use optical tweezers to stretch single lambda-DNA molecules through the helix-to-coil transition in the presence of wild-type and several mutant forms of HIV-1 NC with altered zinc-finger domains. Although all forms of NC lowered the cooperativity of the DNA helix-coil transition, subtle changes in the zinc-finger structures reduced NC's effect on the transition. The change in cooperativity of the DNA helix-coil transition correlates strongly with in vitro nucleic acid chaperone activity measurements and in vivo HIV-1 replication studies using the same NC mutants. Moreover, Moloney murine leukemia virus NC, which contains a single zinc finger, had little effect on transition cooperativity. These results suggest that a specific two-zinc-finger architecture is required to destabilize nucleic acids for optimal chaperone activity during reverse transcription in complex retroviruses such as HIV-1.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC124332 | PMC |
http://dx.doi.org/10.1073/pnas.132128999 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!