Microtubules interact strongly with the viral movement protein (MP) of Tobacco mosaic virus (TMV) and are thought to transport the viral genome between plant cells. We describe a functionally enhanced DNA-shuffled movement protein (MP(R3)) that remained bound to the vertices of the cortical endoplasmic reticulum, showing limited affinity for microtubules. A single amino acid change was shown to confer the MP(R3) phenotype. Disruption of the microtubule cytoskeleton in situ with pharmacological agents, or by silencing of the alpha-tubulin gene, had no significant effect on the spread of TMV vectors expressing wild-type MP (MP(WT)) and did not prevent the accumulation of MP(WT) in plasmodesmata. Thus, cell-to-cell trafficking of TMV can occur independently of microtubules. The MP(R3) phenotype was reproduced when infection sites expressing MP(WT) were treated with a specific proteasome inhibitor, indicating that the degradation of MP(R3) is impaired. We suggest that the improved viral transport functions of MP(R3) arise from evasion of a host degradation pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC150775PMC
http://dx.doi.org/10.1105/tpc.002303DOI Listing

Publication Analysis

Top Keywords

movement protein
12
dna-shuffled movement
8
tobacco mosaic
8
mosaic virus
8
mpr3 phenotype
8
mpr3
5
functional analysis
4
analysis dna-shuffled
4
movement
4
protein reveals
4

Similar Publications

Background: Clear cell renal cell carcinoma (ccRCC) has a high incidence rate and poor prognosis, and currently lacks effective therapies. Recently, peptide-based drugs have shown promise in cancer treatment. In this research, a new endogenous peptide called CBDP1 was discovered in ccRCC and its potential anti-cancer properties were examined.

View Article and Find Full Text PDF

Tongue squamous cell carcinoma (TSCC) is a common malignant oral cancer characterized by substantial invasion, a high rate of lymph node and distant metastasis, and a high recurrence rate. This study aims to provide new ideas for the diagnosis and treatment of TSCC patients by exploring the related mechanisms that affect the migration and invasion of TSCC and inhibit the migration and spread of cancer cells. The results indicated the rate of high expression of IL-17 in cancer tissues was greater than that in tongue tissues, and the expression of IL-17 was related to the TNM stage.

View Article and Find Full Text PDF

The role of Box A of HMGB1 in producing γH2AX associated DNA breaks in lung cancer.

Sci Rep

January 2025

Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand.

An ideal chemotherapeutic agent damages DNA, specifically in cancer cells, without harming normal cells. Recently, we used Box A of HMGB1 plasmid as molecular scissors to produce DNA gaps in normal cells. The DNA gap relieves DNA tension and increases DNA strength, preventing DNA double-strand breaks (DSBs).

View Article and Find Full Text PDF

Scientific research on forest therapy's preventive medical and mental health effects has advanced, but the need for clear evidence for practical applications remains. We conducted an unblinded randomized controlled trial involving healthy men aged 40-70 to compare the physiological and psychological effects of forest and urban walking. Eighty-four participants were randomly assigned to either the forest or urban group, with 78 completing 90-min walks and analysis.

View Article and Find Full Text PDF

CAFs-released exosomal CREB1 promotes cell progression and immune evasion in thyroid cancer via the positive regulation of CCL20.

Autoimmunity

December 2025

Department of Thyroid Head and Neck Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.

Background: Exosomes derived from cancer-associated fibroblasts (CAFs) can affect tumor microenvironment (TME) of thyroid cancer (TC). The cAMP response element binding protein 1 (CREB1) acts as a transcription factor to participate in cancer development. Currently, we aimed to explore the molecular mechanism of exosome-associated CREB1 and C-C motif chemokine ligand 20 (CCL20) in TC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!