Intracellular aggregation of misfolded proteins is observed in a number of human diseases, in particular, neurologic disorders in which expanded tracts of polyglutamine residues play a central role. A variety of other proteins are prone to aggregation when mutated, indicating that this process is a common pathologic mechanism for inherited disorders. However, little is known about the relationship between the sequence of aggregating peptides and the specificity of intracellular accumulation. Here we demonstrate that substitution of two residues eliminates aggregation of a 111-amino acid peptide derived from the C-terminal portion of the cystic fibrosis transmembrane conductance regulator (CFTR). We also show that fusion to a reporter protein considerably alters the subcellular distribution of aggregating peptide. When fused to green fluorescent protein, the peptide containing amino acids 1370-1480 of CFTR accumulates in large perinuclear or nuclear aggregates. The same CFTR fragment devoid of green fluorescent protein localizes predominantly to discrete accumulations associated with mitochondria. Importantly, both types of accumulation are dependent on the presence of the same two amino acids within the CFTR sequence. Co-expression studies show that both CFTR-derived proteins can co-localize in large cytoplasmic/nuclear aggregates. However, neither CFTR construct accumulates in intracellular inclusions formed by N-terminal fragment of huntingtin. In addition to unique accumulation patterns, each aggregating peptide shows differences in association with chaperone proteins. Thus, our results indicate that the process of intracellular aggregation can be a selective process determined by the composition of the aggregating peptides.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M205420200DOI Listing

Publication Analysis

Top Keywords

aggregation misfolded
8
misfolded proteins
8
selective process
8
intracellular aggregation
8
aggregating peptides
8
aggregating peptide
8
green fluorescent
8
fluorescent protein
8
amino acids
8
aggregates cftr
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!