In a previous study, the S100A8/A9 protein, a Ca2+- and arachidonic acid-binding protein, abundant in neutrophil cytosol, was found to potentiate the activation of the redox component of the O2- generating oxidase in neutrophils, namely the membrane-bound flavocytochrome b, by the cytosolic phox proteins p67phox, p47phox and Rac (Doussière J., Bouzidi F. and Vignais P.V. (2001) Biochem. Biophys. Res. Commun.285, 1317-1320). This led us to check by immunoprecipitation and protein fractionation whether the cytosolic phox proteins could bind to S100A8/A9. Following incubation of a cytosolic extract from nonactivated bovine neutrophil with protein A-Sepharose bound to anti-p67phox antibodies, the recovered immunoprecipitate contained the S100 protein, p47phox and p67phox. Cytosolic protein fractionation comprised two successive chromatographic steps on hydroxyapatite and DEAE cellulose, followed by isoelectric focusing. The S100A8/A9 heterodimeric protein comigrated with the cytosolic phox proteins, and more particularly with p67phox and Rac2, whereas the isolated S100A8 protein displayed a tendancy to bind to p47phox. Using a semirecombinant cell-free system of oxidase activation consisting of recombinant p67phox, p47phox and Rac2, neutrophil membranes and arachidonic acid, we found that the S100A8/A9-dependent increase in the elicited oxidase activity corresponded to an increase in the turnover of the membrane-bound flavocytochrome b, but not to a change of affinity for NADPH or O2. In the absence of S100A8/A9, oxidase activation departed from michaelian kinetics above a critical threshold concentration of cytosolic phox proteins. Addition of S100A8/A9 to the cell-free system rendered the kinetics fully michaelian. The propensity of S100A8/A9 to bind the cytosolic phox proteins, and the effects of S100A8/A9 on the kinetics of oxidase activation, suggest that S100A8/A9 might be a scaffold protein for the cytosolic phox proteins or might help to deliver arachidonic acid to the oxidase, thus favoring the productive interaction of the cytosolic phox proteins with the membrane-bound flavocytochrome b.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1432-1033.2002.03002.x | DOI Listing |
Am J Physiol Cell Physiol
January 2025
Cellular Membrane Biology Group, Kolling Medical Research Institute, University of Sydney, New South Wales, Australia.
Oxidative stress from placental ischemia/reperfusion and hypoxia/reoxygenation (H/R) in preeclampsia is accompanied by Na-K pump inhibition and S-glutathionylation of its β1 subunit (GSS-β1), a modification that inhibits the pump. β3-adrenergic receptor (β3-AR) agonists can reverse GSS-β1. We examined the effects of the agonist CL316,243 on GSS-β1 and sources of H/R-induced oxidative stress in immortalized first-trimester human trophoblast (HTR-8/SVneo) and freshly isolated placental explants from normal-term pregnancies.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Institut de Chimie Physique, UMR 8000, CNRS, Université Paris Saclay, Orsay, France. Electronic address:
Commun Biol
October 2024
Division of Gene and Cell Therapy, Institute for Regenerative Medicine, University of Zurich (Schlieren Campus), Schlieren, Switzerland.
J Physiol Sci
October 2024
Laboratory of Molecular Adaptations to Exercise, Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-Nihonmatsu-Cho, Sakyo-Ku, Kyoto, 606-8501, Japan.
Advanced glycation end products (AGEs) are risk factors for various diseases, including sarcopenia. One of the deleterious effects of AGEs is the induction of abnormal reactive oxygen species (ROS) production in skeletal muscle. However, the underlying mechanism remains poorly understood.
View Article and Find Full Text PDFExp Neurol
December 2024
Department of Neurology, First Affiliated Hospital, China Medical University, Shenyang 110001, China. Electronic address:
Traumatic brain injury (TBI) is a predominant cause of long-term disability in adults, yet the molecular mechanisms underpinning the neuropathological processes associated with it remain inadequately understood. Neutrophil cytosolic factor 1 (NCF1, also known as p47) is one of the cytosolic components of NADPH oxidase NOX2. In this study, we observed a reduction in the volume of TBI-induced brain lesions in NCF1-knockout mice compared to controls.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!