Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The origins of the oxygen atoms in 1,7-dioxaspiro[5.5]undecane (1) and hydroxyspiroacetal (2) from Bactrocera cacuminata, and in 2,8-dimethyl-1,7-dioxaspiro[5.5]undecane (3) and hydroxyspiroacetal (4) from B. cucumis, have been investigated by incorporation studies from both [(18)O(2)]-dioxygen and [(18)O]-water. Combined GC-MS examination and high-field NMR analysis have demonstrated that all oxygen atoms in 1 and 2 from B. cacuminata are dioxygen derived, but in contrast, the spiroacetals 3 and 4 from B. cucumis incorporate one ring oxygen from water and one ring oxygen (and the hydroxyl oxygen in 4) from [(18)O(2)]-dioxygen. These results reveal not only the generality of monoxygenase mediation of spiroacetal formation in Bactrocera sp., but also an unexpected complexity in their biosynthesis. A general paradigm accommodating these and other observations is presented.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja026215l | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!