In recent years, worldwide concern over global warming has been expressed. It has been reported that domestic wastewater and its treatment processes are sources of CH4 and N2O, designated as greenhouse gases, the reduction of which was noted to be extremely important at the Third Conference of the Framework Convention on Climate Change (Conference Of the Parties; COP3). Here we report a study of a field that has been unexplored until now: analytical evaluation of the properties of the emission of CH4 and N2O and methods of restricting their emission in soil-trench wastewater treatment processes, the use of which is spreading, mainly in developing nations. The results have provided the following information. A field fact-finding survey has confirmed that soil trenches emit 9.3-13.9 g CH4 m(-3) and 8.2-12.2 gN2O m(-3) in Japan, and 3.0-4.5 g CH4 m(-3) and 3.3-5.0 g N2O m(-3) in China. The emission properties widely vary according to the structure of the treatment system. The conversion ratio for nitrogen in the wastewater influent to N2O by a soil trench is between 2 and a maximum of 8%, and ranges from a few- to several 10-fold as much as that with the activated sludge method, suggesting that this can be a large source of N2O emission. It has also clearly been shown that the aerobic-anaerobic state inside the treatment system is closely related to its CH4 and N2O emission characteristics. By performing ventilation to maintain the oxidation-reduction potential (ORP) near the trench at an aerobic condition of +200 mV or more, the quantities of CH4 and N2O emitted can be reduced by as much as 50% from the levels without this ventilation, and that this can make a large contribution.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0048-9697(01)01058-0DOI Listing

Publication Analysis

Top Keywords

ch4 n2o
20
n2o emission
12
wastewater treatment
12
n2o
8
emission soil-trench
8
soil-trench wastewater
8
treatment processes
8
ch4 m-3
8
treatment system
8
ch4
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!